Matrices, geometry, and mappings Subspaces, Range and Null spaces

A subspace of a vector space is a part of the vector space that obeys

- if \mathbf{x} and \mathbf{y} belong to the subspace, so does $\mathbf{x} + \mathbf{y}$
- if **x** belongs to the subspace, so does $k \cdot \mathbf{x}$, k scalar (real-valued so far)

A subspace is a subset of a vector space, which is also a vector space in its own right.

Examples: The following spaces are all subspaces of \mathbb{R}^3 :

- the origin
- any single axis
- any plane spanned by two of the axes
- the entire \mathbb{R}^3
- Note 1: The origin belongs to every subspace. Here is the proof. If x belongs to the subspace, so does -x, and thus does x x = 0.

Two subspaces are said to be orthogonal if all vectors in one are orthogonal to all vectors in the other.

Example: The two subspaces of \mathbb{R}^2 spanned by $\begin{bmatrix} 1\\0 \end{bmatrix}$ and $\begin{bmatrix} 0\\1 \end{bmatrix}$ are orthogonal.

If the union of two orthogonal subspaces span the original space, then any one of the subspaces is said to be the orthogonal complement of the other.

Example: Same as above.

Consider the equation

$$\mathbf{y} = A \mathbf{x}, \qquad \mathbf{x} \in \mathbb{R}^N.$$

Re-write it

$$\mathbf{y} = A \mathbf{x} = [\mathbf{a}_1, \dots, \mathbf{a}_N] \mathbf{x} =$$

= $\sum_{n=1}^N x_n \mathbf{a}_n$

As you can see, \mathbf{y} is some linear combination of the column vectors of A. Thus, \mathbf{y} belongs to the space spanned by these column vectors. If A is $M \times N$, then this space is some subspace of \mathbb{R}^M .

The range-space of A, denoted $\mathcal{R}(A)$, is the space spanned by the column vectors of A.

Note 2: $\dim [\mathcal{R}(A)] \leq \min(M, N).$

Proof: As $\mathbf{a}_1, \ldots, \mathbf{a}_N$ are of length M, then they can span a space of dimension at most $\min(M, N)$.

The dimension of the column space of \overline{A} is called the rank of A, denoted r.

 $\dim[\mathcal{R}(A)] = r$

Note 3: The rank r equals the number of linearly independent column vectors of A. Actually, this number also equals the number of linear independent row vectors of A.

Now, consider the equation

$$A\mathbf{x} = 0.$$

The vectors x that satisfy $A\mathbf{x} = 0$ define the null-space of A, denoted $\mathcal{N}(A)$.

Note 4: $\dim[\mathcal{N}(A)] \leq N$. **Proof:** $\mathbf{x} \in \mathbb{R}^N$ The following theorem is fundamental in linear algebra.

Theorem: Let A be an $M \times N$ matrix. Then

$$\dim[\mathcal{R}(A)] + \dim[\mathcal{N}(A)] = N$$

Proof¹: The null space has a basis, say $\mathbf{e}_1, \ldots, \mathbf{e}_d$, where $d = \dim[\mathcal{N}(A)]$. Expand this to a basis for \mathbb{R}^N : $\mathbf{e}_{d+1}, \ldots, \mathbf{e}_N$. Any vector \mathbf{x} in \mathbb{R}^N can be expressed in this basis

$$\mathbf{x} = \sum_{n=1}^{N} x_n \, \mathbf{e}_n.$$

Now, $A\mathbf{x}$ can be expanded

$$A\mathbf{x} = \sum_{n=1}^{N} x_n \ A\mathbf{e}_n = \sum_{n=d+1}^{N} x_n \ A\mathbf{e}_n,$$

as $A\mathbf{e}_n$ equals zero for n = 1, ..., d. The key idea of the proof is to show that $A\mathbf{e}_n$, n = d+1, ..., N is a basis for the range space of A which thus has dimension N - d.

The range space of A is obviously spanned by $A\mathbf{e}_n$, $n = 1, \ldots, N$, and thus by $A\mathbf{e}_n$, $n = d + 1, \ldots, N$ as $A\mathbf{e}_n = 0, n = 1, \ldots, d$. Remains to show that $A\mathbf{e}_n$, $n = d + 1, \ldots, N$ are linearly independent. Assume they are not, i.e. that there exist scalars λ_n , $n = d + 1, \ldots, N$ so that

$$\sum_{n=d+1}^N \lambda_n \ A\mathbf{e}_n = 0.$$

This implies that

$$A\sum_{n=d+1}^{N}\lambda_n \mathbf{e}_n = A\mathbf{y} = 0,$$

where **y** does not belong to the null space of A as it is not expressible in the basis of the null space \mathbf{e}_n , $n = 1, \ldots, d$. This contradiction completes the proof.

This theorem describes to what extent the mapping A is invertible; on the range space $\mathcal{R}(A)$ an inverse may be defined. The ambiguity (no inverse exists) is embodied in the null space $\mathcal{N}(A)$.

 $^{^1\}mathrm{Adapted}$ from Jöran Bergh