Matrices, geometry, and mappings

Subspaces, Range and Null spaces

A subspace of a vector space is a part of the vector space that obeys

- if \mathbf{x} and \mathbf{y} belong to the subspace, so does $\mathbf{x}+\mathbf{y}$
- if \mathbf{x} belongs to the subspace, so does $k \cdot \mathbf{x}, k$ scalar (real-valued so far)

A subspace is a subset of a vector space, which is also a vector space in its own right.

Examples: The following spaces are all subspaces of \mathbb{R}^{3} :

- the origin
- any single axis
- any plane spanned by two of the axes
- the entire \mathbb{R}^{3}

Note 1: The origin belongs to every subspace. Here is the proof. If x belongs to the subspace, so does $-\mathbf{x}$, and thus does $\mathbf{x}-\mathbf{x}=0$.

Two subspaces are said to be orthogonal if all vectors in one are orthogonal to all vectors in the other.

Example: The two subspaces of \mathbb{R}^{2} spanned by $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ are orthogonal.

If the union of two orthogonal subspaces span the original space, then any one of the subspaces is said to be the orthogonal complement of the other.

Example: Same as above.
\qquad

Consider the equation

$$
\mathbf{y}=A \mathbf{x}, \quad \mathbf{x} \in \mathbb{R}^{N} .
$$

Re-write it

$$
\begin{aligned}
\mathbf{y} & =A \mathbf{x}=\left[\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}\right] \mathbf{x}= \\
& =\sum_{n=1}^{N} x_{n} \mathbf{a}_{n}
\end{aligned}
$$

As you can see, \mathbf{y} is some linear combination of the column vectors of A. Thus, y belongs to the space spanned by these column vectors. If A is $M \times N$, then this space is some subspace of \mathbb{R}^{M}.

The range-space of A, denoted $\mathcal{R}(A)$, is the space spanned by the column vectors of A.

Note 2: $\quad \operatorname{dim}[\mathcal{R}(A)] \leq \min (M, N)$.
Proof: As $\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}$ are of length M, then they can span a space of dimension at most $\min (M, N)$.

The dimension of the column space of A is called the rank of A, denoted r.

$$
\operatorname{dim}[\mathcal{R}(A)]=r
$$

Note 3: The rank r equals the number of linearly independent column vectors of A. Actually, this number also equals the number of linear independent row vectors of A.

Now, consider the equation

$$
A \mathrm{x}=0
$$

The vectors x that satisfy $A \mathrm{x}=0$ define the null-space of A, denoted $\mathcal{N}(A)$.

Note 4: $\quad \operatorname{dim}[\mathcal{N}(A)] \leq N$.
Proof: $\mathrm{x} \in \mathbb{R}^{N}$

The following theorem is fundamental in linear algebra.
Theorem: Let A be an $M \times N$ matrix. Then

$$
\operatorname{dim}[\mathcal{R}(A)]+\operatorname{dim}[\mathcal{N}(A)]=N
$$

Proof 1 : The null space has a basis, say $\mathbf{e}_{1}, \ldots, \mathbf{e}_{d}$, where $d=\operatorname{dim}[\mathcal{N}(A)]$. Expand this to a basis for $\mathbb{R}^{N}: \mathbf{e}_{d+1}, \ldots, \mathbf{e}_{N}$. Any vector \mathbf{x} in \mathbb{R}^{N} can be expressed in this basis

$$
\mathbf{x}=\sum_{n=1}^{N} x_{n} \mathbf{e}_{n} .
$$

Now, $A \mathrm{x}$ can be expanded

$$
A \mathbf{x}=\sum_{n=1}^{N} x_{n} A \mathbf{e}_{n}=\sum_{n=d+1}^{N} x_{n} A \mathbf{e}_{n}
$$

as $A \mathbf{e}_{n}$ equals zero for $n=1, \ldots, d$. The key idea of the proof is to show that $A \mathbf{e}_{n}, n=d+1, \ldots, N$ is a basis for the range space of A which thus has dimension $N-d$.

The range space of A is obviously spanned by $A \mathbf{e}_{n}, n=1, \ldots, N$, and thus by $A \mathbf{e}_{n}, n=d+1, \ldots, N$ as $A \mathbf{e}_{n}=0, n=1, \ldots, d$. Remains to show that $A \mathbf{e}_{n}, n=d+1, \ldots, N$ are linearly independent. Assume they are not, i.e. that there exist scalars $\lambda_{n}, n=d+1, \ldots, N$ so that

$$
\sum_{n=d+1}^{N} \lambda_{n} A \mathbf{e}_{n}=0
$$

This implies that

$$
A \sum_{n=d+1}^{N} \lambda_{n} \mathbf{e}_{n}=A \mathbf{y}=0
$$

where \mathbf{y} does not belong to the null space of A as it is not expressible in the basis of the null space $\mathbf{e}_{n}, n=1, \ldots, d$. This contradiction completes the proof.

This theorem describes to what extent the mapping A is invertible; on the range space $\mathcal{R}(A)$ an inverse may be defined. The ambiguity (no inverse exists) is embodied in the null space $\mathcal{N}(A)$.

[^0]
[^0]: ${ }^{1}$ Adapted from Jöran Bergh

