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Application Example: MUSIC

The following example is a version of an algorithm, MUSIC, with reference to

problems in communication. This is the scenario: we have a scalar signal, y(t),
which is the sum of L complex sinusoids in additive noise,

y(t) =
LX
`=1

b` e
j!`t + e(t):

The task at hand is to estimate the frequencies !` from the observations y(t).
We start by stacking some observations in a vector:

y(t) =

2
6664

y(t)
y(t� 1)

...

y(t�M)

3
7775 = use the model of y(t) =

=

2
666664

1 1
e�j!1 e�j!L

... � � �
...

...
...

e�jM!1 e�jM!L

3
777775

2
6666664

b1 e
j!1t

...

...

...

bL e
j!Lt

3
7777775
+

2
6666664

e(t)
...
...
...

e(t�M)

3
7777775

We note with pleasure that the matrix involved is vandermonde, and thus has

full rank for !` distinct. Introduce the notations

a(!) =
�
1 e�j! � � � e�jM!

�H
;

and

s` = b` e
j!`t;

so that

y(t) =

�
a(!1) � � � a(!L)

�264
s1
...

sL

3
75 + noise = A s+ noise:

Now, we make some observations:

� The steering vector a(!) is a curve in CM+1.

� For M � L � 1, fa(!`)g
L

`=1 span an L-dimensional subspace of CM+1, the

signal subspace.
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� The set f!`g
L

`=1 is the solution to the intersection of a(!) and the signal

subspace. The set is unique as the vandermonde matrix has full rank equal

to L.

In conclusion, it seems to be a good idea to estimate the signal subspace. One

way to do this is to estimate the correlation matrix

R̂ =
1

N

NX
n=1

y(n)yH(n):

As this is a course on linear algebra, we disregard the in�uence of the noise.

R̂ =
1

N

NX
n=1

A s(n) sH(n)AH =

=A

"
1

N

NX
1

s(n) sH(n)

#
AH = A R̂sA

H

provided that R̂s is full rank.

Hurray, the range-space of R̂ equals the range-space of A, equals the signal sub-

space.

Note 1: When noise is present, assume that it is white and small. Then take

the L largest eigenvalues of R̂ � R̂ Hermitian implies real-valued non-negative

eigenvalues. The corresponding eigenvectors span the estimate of the signal sub-

space.

Let S be the matrix of dimensions (M + 1) � L that has orthonormal columns

that span the signal subspace. As the norm of a(!) equals M + 1, independent
of !, the desired solution is found by �nding the L maxima to the following:

max
!

��aH(!) S��2
To produce nice plots, you can construct the MUSIC pseudo-spectrum

P (!) =
1

1� jaH(!) Sj2

ja(!)j2
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Application Example: ESPRIT

Refer back to the example presenting MUSIC to �nd the relevant model for the

data

y(t) = A s(t) + e(t);

where the steering matrix A is

A(!) = [a(!1) � � � a(!L)] =

=

2
666664

1 1
e�j!1 e�j!L

...
...

...
...

e�jM!1 e�jM!L

3
777775 :

Now, partition A in two di�erent ways:

A =

�
A1

last row

�
=

�
�rst row

A2

�
:

It follows

A2 = A1�;

where

diag(�) =
�
e�j!1; : : : ; e�j!L

�
:

So, to estimate the frequencies, �nd �.

Unfortunately, we do not have A. We can estimate, however, the signal subspace

from the data, and construct the matrix S that spans the same subspace as does

A, as demonstrated in the derivation of the MUSIC algorithm. This means that

there exists a square full rank transformation matrix that relates A and S:

S = AT:

Now partition S as we did with A. Then

S1 = A1 T

S2 = A2 T;

and

A2 = A1�

implies

S2 T
�1 = S1 T

�1�;

which in turn leads to

S2 = S1 T
�1�T = S1	:
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As 	 and � are related by a similarity transform, they have the same eigenvalues,

and we �nd the frequencies by �nding the eigenvalues of 	. In practice, you need

to solve

S2 = S1	

in a least squares sense. In Matlab code, it is really simple:

	 = S1nS2

will do it.
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