Permutations

Permutation matrices occur now and then in signal processing problems. One example can be found in the blind source separation scenario. The situation is as follows: you have N signal sources that are mixed in a linear MIMO system (Multiple Input Multiple Output):

Now you desire to de-mix the signals y_{n}, and you use a MIMO de-mixer:

You design the de-mixer so that the outputs s_{n} each depend on one source signal only! How do you ascertain that s_{1} depends on x_{1} and so on? The answer is that you cannot always do that, but you can still separate the signals so that

$$
s_{n}=x_{k} \quad \text { for some } k,
$$

Thus, the outputs s_{n} are permutated versions of the inputs x_{n}.

An N by N permutation matrix has N entries that are unity, the rest are zero. Its determinant has unit magnitude.

It follows that each row - and column - has exactly one entry which is unity. It also follows that there are N ! distinct permutation matrices of size N by N. Let

$$
P=\left[\mathbf{p}_{1} \cdots \mathbf{p}_{N}\right]
$$

where each column vector has zeros except in one, unique position. Study

$$
P^{T} P=\left[\begin{array}{c}
\mathbf{p}_{1}^{T} \\
\vdots \\
\mathbf{p}_{N}^{T}
\end{array}\right]\left[\mathbf{p}_{1} \cdots \mathbf{p}_{N}\right]=\left[\begin{array}{cccc}
1 & & & \\
& \ddots & 0 & \\
& 0 & \ddots & \\
& & & 1
\end{array}\right]=I
$$

Thus, permutation matrices are norm preserving, and all eigenvalues fall on the unit circle.

The product of two permutation matrices is a permutation matrix. This follows by considering

$$
P_{1}=\left[\mathbf{p}_{1} \cdots \mathbf{p}_{N}\right],
$$

and

$$
P_{2}=\left[\mathbf{p}_{n 1} \cdots \mathbf{p}_{n N}\right],
$$

where P_{2} has scrambled the columns of P_{1}. Now, each row of P_{1} has one unity entry that is guaranteed to hit the unity entry of exactly one column of P_{2} so that

$$
P_{1} P_{2}=P_{3},
$$

where P_{3} is a permutation matrix.
It seems reasonable that if you keep on permuting the entries of a vector with the same permutation matrix, you will sooner or later return to the original vector. This means that there exists a positive integer K so that

$$
P^{K} \mathbf{x}=\mathbf{x}
$$

and that

$$
P^{K}=I .
$$

This is indeed true, but we do not give the proof here.
Exercise: List all six permutation matrices of size 3×3 and show the above relationship.

Note: A consequence of $P^{K}=I$ is that the eigenvalues to P solve the equation $\lambda^{K}=1$.

Please run the m-file permutations in Matlab.

```
% permutations.m
clear
% Generate a random permutation matrix
N=5;
v=rand(5,1);
[u,k]=sort(v);
P=zeros(N,N);
for n=1:N
P(n,k(n))=1;
end
% Test what P does to a matrix
A=zeros(N,N);
B=zeros(N,N);
for n=1:N
A(n,:)=(n-1)*N+1:n*N;
B(:,n)=((n-1)*N+1:n*N)';
end
sprintf('Left-multiplication by a permutation matrix equals a row-exchange')
P, A, P*A
pause
sprintf('Right-multiplication by a permutation matrix equals a column-exchange')
B, P, B*P
pause
% Find the periodicity of P
PP=P;
n=1;
while max(max(PP-eye(N))) > 0
n=n+1;
PP=P*PP;
end
sprintf('Power of P that equals the identity')
P, n, P^n
% Can you find the pattern in P that determines the periodicity?
```

