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Quadratic forms

It is part of human nature that we sometimes want to do something the best
way possible. In a scienti�c context, this requires that we know exactly what
'the best way possible' means. For instance, consider estimating the parameters
of a mathematical model for some real-life system. Then we need to formulate
a criterion of optimality, which results in a single real number. Now, we are
in a position to state explicitly that best means maximizing the value of the
criterion function with respect to all possible choices of the numerical values of
the parameters of the model.

The generic formulation is as follows. The criterion function V is a mapping

V : R
N 3 x

V
y y 2 R1

Note 1: In system identi�cation and signal processing we often use � for the
parameter vector.

Note 2: If the criterion function denotes a cost, we want to �nd the global
minimum.

Now, a necessary condition for the existence of a maximum or minimum of a
di�erentiable V is that the gradient is zero. The gradient of V is a vector where
we have stacked all the �rst order derivatives of V with respect to the components
of x:
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Note 3: It is easily shown that  = 0 is not su�cient to state that we have
found a maximum or minimum. Take as a counterexample

V (x) = x3;

where x 2 R1 . The problem is that the second derivative vanishes at the origin
as well.

To form a su�cient condition for the existence of a maximum or minimum of V ,
we have to study the second order derivatives. These can be placed in a matrix
H as follows:

H =
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=
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...
...
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3
77775 :

This matrix is called the Hessian of the criterion function V .
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Now we have set the �rst stage of introducing quadratic forms. The second part
is to notice that for 'nice' mappings V , we can expand V in a Taylor series

V (x0+�x) = V (x0) + 
T (x0)�x+

+
1

2
(�x)TH(x0)�x + higher order terms.

Noting that a stationary point x0 requires  (x0) = 0 and rearranging terms we
arrive at

2

�
V (x0 +�x)� V (x0)

�
� (�x)T H(x0) �x :

The right hand side is a quadratic form and contains all information needed to
determine the character of the behavior of V close to x0 (unless H is the null
matrix). In particular, we can tell whether V has a maximum, a minimum or
neither.

De�nition: A (purely) quadratic form is the multivariate purely second
degree polynomial xTAx, where x 2 RN and A is N �N .

Note 4: As
xTAx =

�
xTAx

�T
= xTAT x

we �nd

xTAx = xT
�
A+ AT

2

�
x;

and in the sequel we will always assume that A is symmetric. This is no restric-
tion!

Note 5: To simplify the notation we have translated the original problem by
�x0 so that

 (0) = 0;

and by �V (0) so that
V (0) = 0:

Examples: Here are some quadratic forms:

V (x) = x2

V (x; y) = x2 + 2y2 � 3xy

V (x) =
NX
i=1

iX
j=1

aij xi xj

Let us thus study
V (x) = xTAx
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in some neighborhood, D, to the origin. V (x) has a local minimum at the origin
i�

V (x) > 0 8 x 2 D; x 6= 0:

Recall the eigenvalue decomposition of symmetric matrices

A = U � UT ;

where U is orthogonal, and the eigenvalues of A are found in the diagonal matrix
�. With

y = UT x

we �nd
V (y) = yT � y;

and the neighborhood D transforms into some other neighborhood Dy. We con-
clude

V (x) > 0 8 x 2 D; x 6= 0

()

V (y) > 0 8 y 2 Dy; y 6= 0

()

All eigenvalues of A are positive.

Symmetric matrices with only positive eigenvalues are called positive de�nite.

To summarize:

V (x) has a local minimum at x = x0 i�

� the gradient of V is zero at x0

� all eigenvalues of the Hessian of V are posi-
tive at x0

Exercise: Formulate the theorem that concerns local maxima.

Note 6: A positive semide�nite matrix is one with non-negative eigenvalues, also
called non-negative de�nite. If you �nd such a Hessian, you cannot guarantee a
local minimum. Rather V has a �valley� which is �horizontal� and runs in the
direction of the eigenvector that has zero as its eigenvalue.

Note 7: A matrix with both positive and negative eigenvalues is called inde�nite.
Such a Hessian would correspond to a saddle point in two dimensions (x is two-
dimensional).

Note 8: Optimization can be quite tricky, and we have only touched upon
one principle. To �nd the global maximum of V , you must typically �nd all local
maxima, and there can be many, and choose the largest. To �nd a local maximum
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you must typically start a numerical search within the �radius of attraction� of
that maximum. That radius might be quite small. The di�culties are re�ected
in the number of algorithms designed:

gradient search
Gauss-Newton search
genetic algorithms
neural networks
purely numerical search
etcetera

To reiterate, if you want to �nd a global minimum, it is in general not enough to
search for stationary points. This is the reason for the many di�erent algorithms.

Please run the m-�le quadform in Matlab.
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% quadform.m

% illustration of quadratic forms

clear

% Generate the data

x1=-1:.02:1;

x2=x1;

x=[x1' x2'];

A=[1 0 ; 0 1];

N=length(x1);

for n1=1:N

for n2=1:N

data(n1,n2)=[x1(n1) x2(n2)]*A*[x1(n1) x2(n2)]';

end

end

% plot it

mesh(x1,x2,data)

% use in the above various matrices.

% [1 0 ; 0 1] is pos def

% [1 0 ; 0 0] is pos semidef

% [1 0 ; 0 -1] is indef

% [-1 0 ; 0 0 ] is neg semidef

% [-1 0 ; 0 -1] is neg def

% Compare the behaviour of the graphs with the eigenvalues of the matrix A.

% use the matlab command eig(A)
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