Reflections

Let us start by studying an example. Given a point Q in the plane, reflect Q in some subspaces (lines and points in the plane). One example is shown explicitly.

We note that it seems as if $Q, Q_{L 1}, Q_{L 2}$ and $Q_{P 1}$ fall on a circle (easily proven using elementary methods from geometry) with its center at the origin. Also note that $Q_{L 3}$ and $Q_{P 2}$ do not fall on the same circle.

We also note that $L 1, L 2$ and $P 1$ are all linear subspaces (contain the origin), whereas $L 3$ and $P 2$ are not.

The global conclusion is:

Reflections in linear subspaces are normpreserving.

You can also easily convince yourself that an orthogonal reflection in linear subspaces is a linear mapping - use R^{2}, select two points Q_{1} and Q_{2}, and let your intuition work. Thus, there must exist something worthy of the name reflection matrix.

The last piece of evidence we need to make a sensible definition of a reflection matrix is to note that the mirror image of a mirror image takes us back to where we started.

First step towards the definition: Denote the vector to the point Q by \mathbf{x}, and the reflection matrix by M. Then

$$
\|M \mathrm{x}\|=\|\mathrm{x}\|
$$

and

$$
M^{2} \mathrm{x}=\mathbf{x}
$$

The first equation implies (see Norm-preserving linear mappings) that

$$
M^{T} M=I,
$$

the second that

$$
M M=I,
$$

so that M is symmetric. We can now make the sensible definition:

> Definition: A symmetric N by N matrix M is called a reflection matrix iff M^{2} equals the identity matrix.

Note 1 We have used "reflection" as short for "orthogonal reflection". There exist strange things called oblique reflections.

Note 2 Can you see how reflection can be used to highlight the concept of projection?

The eigenvalues of reflection matrices are easily found:

$$
\begin{gathered}
M \mathbf{g} \triangleq \lambda \mathbf{g} \\
\mathbf{g}=I \cdot \mathbf{g}=M^{2} \mathbf{g}=M \lambda \mathbf{g}=\lambda M \mathbf{g}=\lambda^{2} \mathbf{g}
\end{gathered}
$$

Thus

$$
\lambda \in\{-1,1\}
$$

Note 3 Can you guess how to determine the number of eigenvalues that equal 1?

Hint: Let us see what you make of the following examples.

Example 1 Which matrix produces $Q_{L 1}$ in the figure on page 1?
Example 2 Which matrix produces $Q_{P 1}$ in the figure on page 1 ?
Example $3 M_{1}=-I$. What is the subspace, in particular its dimension?
Example $4 M_{2}=I$. What is the subspace, in particular its dimension?

Example 5

$$
M_{3}=\left[\begin{array}{ccccc}
1 & & & & \\
& -1 & & 0 & \\
& & -1 & & \\
& 0 & & \ddots & \\
& & & & -1
\end{array}\right] . \text { What is the subspace? }
$$

Note 4 This argument/result will reappear in the context of projections.
Note 5 How do you construct the reflection matrix that reflects in a given subspace? This will be shown in the section on projections.

Exercise: Show that the following matrix

$$
M=\left[\begin{array}{rr}
\cos 2 \alpha & \sin 2 \alpha \\
\sin 2 \alpha & -\cos 2 \alpha
\end{array}\right]
$$

performs a reflection in the line through the origin with angle α. The matrix M is an example of a Householder reflection, also known as Householder matrix or Householder transformation.

Please run the m-file reflections in Matlab. Please note that the construction of the reflection matrix follows the procedure outlined in the leaflet on projections.

```
% reflections.m, reflections in a plane in 3D
% run this program several times, random data.
clear
```

$\mathrm{v} 1=\mathrm{randn}(3,1) ; \mathrm{v} 2=\operatorname{randn}(3,1) ; \mathrm{A}=[\mathrm{v} 1 \mathrm{v} 2]$;
\% Construct the reflection matrix, M, and check for key properties
$\mathrm{P}=\mathrm{A} * \operatorname{inv}\left(\left(\mathrm{~A}^{\prime} * \mathrm{~A}\right)\right) * \mathrm{~A}^{\prime} ; \mathrm{M}=2 * \mathrm{P}-\operatorname{eye}(3)$;
norm(M-M','fro'), norm(M*M-eye(3),'fro')
\% Create an ON-basis for the plane and generate plane-plot
$[q, r]=q r(A, 0) ;$
step=0.2; width=3; index=1;
for l=-width:step:width
p1=l*q(:,1)-width*q(:,2);
$\mathrm{p} 2=1 * \mathrm{q}(:, 1)+\mathrm{width} * \mathrm{q}(:, 2)$;
$\mathrm{p} 3=(1+$ step $/ 2) * \mathrm{q}(:, 1)+$ width*q(:,2);
$\mathrm{p} 4=(1+$ step $/ 2) * \mathrm{q}(:, 1)-$ width*q(:,2);
planeplot (: ,index)=p1;
planeplot (:,index+1)=p2;
planeplot (: ,index+2)=p3;
planeplot (: ,index +3) $=\mathrm{p} 4$;
index=index+4;
end
ax=[-width width -width width -width width];
\% Generate some random vectors and project them
$\mathrm{m}=50$;
dum=randn(3,m);
dummer=M*dum;
\% plot some examples
figure(1), clf, axis(ax), axis equal, view(3), hold on
plot3([0 v1(1)], [0 v1(2)], [0 v1(3)], 'b')
plot3([0 v2(1)], [0 v2(2)], [0 v2(3)], 'b')
for l=1:5
plot3(dum $(1,1)$, dum $(2,1)$,dum $(3,1), ' r p ')$
plot3 (dummer $(1,1)$, dummer $(2,1)$, dummer $(3,1), ' g p ')$
plot3([dum $(1,1)$ dummer $(1,1)],[\operatorname{dum}(2,1)$ dummer $(2,1)],[\operatorname{dum}(3,1)$ dummer $\left.(3,1)], \quad y^{\prime}\right)$
end
plot3(planeplot(1,:), planeplot(2,:), planeplot(3,:), 'k')
title('Five points and their reflections')

