Rotations

Applications of rotations are extensive in computer graphics. The car designer who wants to look at a new design from different angles, the chemist interested in the 3D structure of molecules are both applying rotations. We will start by considering rotations in a plane:

Let us make use of the results obtained in "Norm-preserving linear mappings from \mathbb{R}^{N} to $\mathbb{R}^{N "}$. First, convince yourself that rotation is a linear mapping. The preservation of the norm is obvious. Thus, there exists a rotation matrix, dependent on the rotation angle, β. Let us call this matrix R_{β}, and we know that

$$
R_{\beta}^{T} R_{\beta}=I,
$$

as it preserves the norm. Some further consideration tells us that the inverse of R_{β} must be the matrix $R_{-\beta}$, as this latter matrix will take us back:

$$
R_{-\beta} R_{\beta} \mathrm{x}=\mathbf{x}
$$

We thus know

$$
R_{\beta}^{-1}=R_{\beta}^{T}=R_{-\beta},
$$

and that R_{β} most reasonably will contain $\cos (\beta)$ and $\sin (\beta)$ as elements.
Let us set up two special cases:

Obviously,

$$
\binom{\cos \beta}{\sin \beta}=R_{\beta}\binom{1}{0}
$$

and

$$
\binom{-\sin \beta}{\cos \beta}=R_{\beta}\binom{0}{1}
$$

We find

$$
R_{\beta}=\left(\begin{array}{cc}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta
\end{array}\right)
$$

Exercise 1: Check

$$
R_{\beta}^{-1}=R_{\beta}^{T}=R_{-\beta}
$$

Exercise 2: Use

$$
R_{\beta} \cdot R_{\gamma}=R_{\beta+\gamma}
$$

to derive some trigonometric formulas.

Note 1 The rotation in a plane in N dimensions is performed by the matrix

$$
R=\left[\begin{array}{ccccccccc}
1 & & & & & & & & \\
& \ddots & & & & & & & \\
& & 1 & & & & & & \\
& & & \cos \beta & & & -\sin \beta & & \\
& & & 1 & & & & & \\
& & & & \ddots & & & & \\
& & & \sin \beta & & & 1 & & \cos \beta \\
& & & & & & 1 & & \\
& & & & & & & \ddots & \\
& & & & & & & & 1
\end{array}\right]
$$

zeroes in unmarked positions. Please convince yourself that the proposition in Note 1 is true.

Note 2 When you want to rotate "in several dimensions", you cascade rotation matrices as above.

Note 3 These matrices are named Givens rotations.

Please run the m -file rotations in Matlab.
\% rotations.m
\% run this program several times, random data
\%
\% The idea is as follows. You can rotate a point around an arbitrary axis
\% by moving the axis of rotation and the point to the vertical direction, say, \% rotate around the 'z-axis', and then move the package back to where it came from. clear
\% Generate an axis of rotation, and a point to rotate.
rotax=rand (3,1);
point=rand $(3,1)$;
$\%$ move the axis to the vertical in two steps, rotate around the y-axis to the $y-z p$ \% then around the x-axis to coincide with the z-axis. These are two Givens rotation gamma=atan(rotax(1)/rotax(3));
$\mathrm{cg}=\cos$ (gamma); $\mathrm{sg}=\sin$ (gamma);
roty $=[\mathrm{cg} 0-\mathrm{sg}$; 010 ; sg 0 cg$]$;
rotax1=roty*rotax;
point1=roty*point;
beta=atan(rotax1(2)/rotax1(3));
$\mathrm{cb}=\mathrm{cos}$ (beta) ; sb=sin(beta);
rotx=[1 00 ; $0 \mathrm{cb}-\mathrm{sb}$; 0 sb cb$]$;
rotax2=rotx*rotax1;
point2=rotx*point1;
\% check that rotax2 is parallell with the z-axis.
\% now, rotate around the 'z-axis'
alpha=2*pi/1000;
ca=cos(alpha); sa=sin(alpha);
rotz=[ca -sa 0 ; sa ca 0 ; 001];
dum (: , 1) =point2;
for $1=2: 1000$
$\operatorname{dum}(:, 1)=r o t z * \operatorname{dum}(:, 1-1)$;
end
\% plot the circle of rotation
figure(1), clf, axis equal, hold on, view(3)
plot3(dum (1,:), dum (2,:), dum (3,:), 'r')
plot3(point2(1), point2(2), point2(3), 'rp')
plot3([0 0],[0 0],[0 1],'k')
\% now go back to the original axis of rotation. Note, ' equals inverse.
dum1=rotx'*dum;
dum2=roty'*dum1; \% done!
plot3(dum2(1,:), dum2(2,:), dum2(3,:), 'b')
plot3([0 rotax(1)],[0 rotax(2)],[0 rotax(3)],'y')
plot3(point(1), point(2), point(3), 'bp')
title(' original rotation - yellow/blue')
\% In summary, you rotate around the desired axis of rotation by myltiplying the $\%$ vector to the point to be rotated by the matrix
\% rottot=roty'*rotx'*rotz*rotx*roty
$\%$ with alpha in rotz equal to the desired angle of rotation.

