Kursinformation: Matematiska Metoder, del a, E2, fk, 3p;
TMV065/TMA 980a, lp I, ht2003
Aktuellt
-
Extraföreläsning Fre, 3/10, 8-10, HB4.
-
Övningstentan som gick 27/9 är nu rättad och återlämnad. Ej hämtade tentor kan avhämtas i
mottagningsrummet MC, bredvid matte-expeditionerna.
Syfte
Kursens syfte är att ge sådana kunskaper och färdigheter i
matematiken för linjära system att tillämpningar på ett
tekniskt/naturvetenskapligt problem kan fokuseras
på valet av relevant modell.
Omfattning
Kursen omfattar 3 poäng i läsperiod I och behandlar huvudsakligen
linjär algebra.
Föreläsare och kursansvarig
Vilhelm Adolfsson,
vilhelm@math.chalmers.se, ankn. 53 07, MC rum 1330.
KursPM och Preliminärt Arbetschema
Kurslitteratur
- (LAT:) Kjell Holmåker, Linjär algebra med tillämpningar,
Göteborg 2003, med övningshäfte:
- (PS:) Problemsamling till Linjär algebra
med tillämpningar, Göteborg 2003.
De med äldre version av PS kan hämta de uppgifter som tillkommit i den
nya versionen på kurshemsidan 0203: (KÖ:) Kompletterande övningar. OBS att
uppgiftsnumreringen i äldre versioner inte stämmer med versionen 2003.
Numreringen för tidigare versioner finns på förra årets kurshemsida, 0203.
LAT och PS finns att köpa på DC, (Distributionscentralen,
Teknologsektion E).
- Rekommenderad komplementerande litteratur (för bredvidläsning):
LAA: G. Strang, Linear Algebra and Its Applications, third edition,
Harcourt Brace & Co.
Schema
- Föreläsningar: M: 10-12, HB3; Ti: 8-10, HB3;
F: 8-10, HB4, (lv 2,4,6)
- Övningar: Grupp A): Ti: 15-17, ML5,(6); F: 13-15,ML5,(6)
- Övningar: Grupp B): M: 13-15, ML6,(7); O: 15-17, ML15,(16)
- Övningar: Grupp C): Ti: 13-15, ML3,(4); To: 15-17, ML8,(10)
Lärare
- Föreläsningar: Vilhelm Adolfsson, MC rum 1330, 5307,
vilhelm@math.chalmers.se, (examinator).
Övningar: Grupp A) Vilhelm Adolfsson, 5307; B) Kjell Holmåker, 3567;
C) Alexander Stolin, 5320.
- Lärarna träffas säkrast i anslutning till undervisningen.
Studieförtroendeman
Ahmad Amer, ok2@hotmail.com, 0707345358
Examination
- Examinationen är skriftlig efter läsperioden med teorifrågor och
problem att lösa. Tentan består av åtta deluppgifter.
"Gamla tentor" tillhandahålls av DC,
(Distributionscentralen, Teknologsektion E), eller se kurshemsidan.
Ordinarie tentamen äger rum fredag, 24/10, em, V.
- Gamla tentor och
Lösningar till Gamla tentor:
- 9900:
Tenta E2-991022 (ps pdf),
Lösning E2-991022 (ps pdf),
Tenta E2-000112. (ps pdf),
Lösning E2-000112 (ps pdf),
Tenta E2-000817 (ps pdf),
Lösning E2-000817 (ps pdf)
- 0001:
Övningstenta E2-000923 (ps pdf),
Lösning Övningstenta E2-000923 (ps pdf),
Tenta E2-001020 (ps pdf),
Lösning E2-001020 (ps pdf),
Tenta E2-010110 (ps pdf),
Lösning E2-010110 (ps pdf),
Tenta E2-010823 (ps pdf),
Lösning E2-010823 (ps pdf)
- 0102:
Övningstenta E2-010929 (ps pdf),
Lösning Övningstenta E2-010929 (ps pdf),
Tenta E2-011026 (ps pdf),
Lösning E2-011026 (ps pdf),
Tenta E2-020115 (ps pdf),
Lösning E2-020115 (ps pdf),
Tenta E2-020822 (ps pdf),
Lösning E2-020822 (ps pdf)
- 0203:
Övningstenta E2-020928 (ps pdf),
Lösning Övningstenta 020928 (ps pdf),
Tenta E2-021025 (ps pdf),
Lösning Tenta 021025 (ps pdf),
Tenta E2-030114 (ps pdf),
Tenta E2-030821 (ps pdf),
- 0304:
Övningstenta E2-030927 (ps pdf),
Tenta E2-031024 (ps pdf),
Tenta E2-040113 (ps pdf),
Tenta E2-040819 (ps pdf),
Övningstenta
- En frivillig övningstenta, motsvarande en halv
sluttenta och omfattande 4 uppgifter
som ger maximalt 25 poäng tillsammans, ges lördagen 27/9.
Skrivtiden är 2 timmar. Uppnådda poäng
på övningstentan
ger bonuspoäng på tentamenstillfällen för
Matematik fk, del A, innevarande läsår.
Bonuspoäng erhålles enligt: varje
uppnådda 6 poäng på övningstentan ger 1 poäng i bonus.
Närmare upplysningar meddelas under kursens gång på
föreläsningar och kurshemsida.
Preliminärt veckoschema
lv 1
Huvudsakligen repetition samt LDU-faktorisering.
Nyckelord: linjära ekvationssystem, matriser, matrisekvationer,
gausselimination, matrisfaktorisering, LDU-faktorisering.
Demonstration: Övn. 1: PS: 1, 2, 206A, 209a).
lv 2
Vi behandlar LAT kap. 1.
Nyckelord: linjära rum (vektorrum), underrum, L^2, linjärkombinationer,
linjärt oberoende, bas, dimension, koordinater, basbyte,
värderummet (kolonnrummet) V(A), rang, nollrummet N(A), lösbarhet
och entydighet för ekvationen Ax=b.
Demonstration: Övn. 2: PS: 13, 21, 23.
Övn. 3: PS: 38a), 40a), 41b), 51a).
Förslag till övningar: PS: 11, 19, 20, 22-24, 29-33, 38-46, 48, 51, 52.
lv 3
Vi behandlar LAT (kap. 1 och) kap. 2 och del av kap. 7.
Nyckelord: skalärprodukter, projektioner, ortogonalmatriser, Gram -
Schmidt ortogonalisering, QR-faktorisering, minstakvadratmetoden.
Demonstration: Övn. 4: PS: 56, 69, 71a).
Övn. 5: PS: 84B, 90c), 92b), 95.
Förslag till övningar: PS: 53-55, 57-63, 65-68, 70-79, 81,
82-84, 87, 88, 90-94, 96-98, 102.
lv 4
Vi behandlar LAT (kap. 2 och) kap. 3 och del av
kap. 4.
Nyckelord: linjära avbildningar, isometri, funktionaler,
Diracs delta-funktion, matrisrepresentation av linjär avbildning,
matrisrepresentationen vid basbyte, similära matriser, linjära
avbildningar med geometriska exempel, egenvärden och egenvektorer.
Demonstration: Övn. 6: PS: 107, 111d), 113, 115.
Övn. 7: PS: 122, 126, 134f), 141.
Förslag till övningar: PS: 103, 105, 106, 108, 110, 111, 112,
114, 116, 119-121, 123-129, 131, 134-139, 142-144.
lv 5
Vi behandlar LAT kap. 4.
Nyckelord: diagonalisering, Spektralsatsen, matrisprodukter A^k,
kvadratiska former, positivt och negativt definita samt
indefinita former.
Demonstration: Övn. 8: PS: 145a), 150, 155c), 157.
Övn. 9: PS: 158, 160, 166a), 169a).
Förslag till övningar: PS: 145-149, 151-156, 165, 166-171,
173, 175-177, 180-184.
lv 6
Vi behandlar LAT (kap. 4 och) kap. 5 och kap. 6.
Nyckelord: skalärprodukt i komplexa vektorrum, Hermiteska
matriser, unitära matriser, Shurs lemma, spektralsatsen för normala
matriser, Jordans normalform, linjära differentialekvationer,
lösningsrummet till en homogen ekvation, inhomogen ekvation,
matrisexponentialfunktionen som analogin i fallet x'=Ax till
lösning med integrerande faktor, Cayley-Hamiltons sats, något
om Fourierserier.
Demonstration: Övn. 10: PS: 85A, 190, 193.
Övn. 11: PS: 197, 201a), 202, 203a).
Förslag till övningar: PS: 85BC, 194-196, 198-203, LAT: Kap. 5, övning 1, 2.
lv 7
Reserv och repetition.
Demonstration: Övn. 12: Reserv. Övn. 13: Gamla tentor (meddelas senare).