
Answers to even numbered exercises

1.1

20. h 6= −4.
22. h = 6.
24. False, true, false, true.
34. T1 = 20, T2 = 27.5, T3 = 30, T4 = 22.5.

1.2

20 (a) h = −6, k 6= 2 (b) h 6= −6, any k (c) h = −6, k = 2.
22. True, false (could be a row of zeroes in the coefficient matrix), false,
true, false.
24. Not necessarily. The third row could consist entirely of zeroes and the
second row entirely of zeroes on the left, with a pivot (i.e.: non-zero number)
on the right.
26. Yes, since there cannot then be a row of zeroes in the coefficient matrix.
28. There should be a pivot in each column of the coefficient matrix, but
not in the right-hand column of the augmented matrix.
30. x + y + z = 1 and x + y + z = 2.
34. Matlab exercise. We seek the interpolating polynomial

F (v) = ao + a1v + a2v
2 + a3v

3 + a4v
4 + a5v

5.

From the six given data points, we obtain the system Ax = b, where

A =

















1 0 0 0 0 0
1 2 22 23 24 25

1 4 42 43 44 45

1 6 62 63 64 65

1 8 82 83 84 85

1 10 102 103 104 105

















, x =

















a0

a1

a2

a3

a4

a5

















, b =

















0
2.9
14.8
39.6
74.3
119

















.

Plugging into Matlab, using short format and running the command
“> A\b”, I obtained the following solution correct to 4 decimal places :

a0 = 0, a1 ≈ 1.7125, a2 ≈ −1.1948, a3 ≈ 0.6615, a4 ≈ −0.0701, a5 ≈ 0.0026.
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Hence, when v = 750, we estimate

F (750) ≈ 0 + (1.7125)(750)− (1.1948)(7502) + (0.6615)(7503)

−(0.0701)(7504) + (0.0026)(7505) ≈ 5.9509× 1011 lb.

Remark : Rounding off to 4 decimal places seems to introduce non-negligible
errors. For example, if we plug in v = 10, then we get F (10) ≈ 118.145,
instead of the measured value of 119. For greater precision, one should run
one’s program in long format (16 decimal places).

1.3

2. u + v =

[

5
−3

]

, u− 2v =

[

−1
4

]

.

24. False, true, true, false, false.

1.4

16. The echelon form of the augmented matrix is




1 −2 −1 | b1

0 −2 −2 | b2 + 2b1

0 0 0 | 6b1 + 7b2 + 2b3



 .

Thus there is a solution if and only if 6b1 + 7b2 + 2b3 = 0.
24. True, true, true, false, true, false.

1.5

8. We want to write in parametric vector form the set of all x = [x1 x2 x3 x4]
T ∈

R
4 such that Ax = 0. We are told that A is row equivalent to the given ma-

trix, which we call U , i.e.:

U :=

[

1 −3 −8 5
0 1 2 −4

]

.

This row equivalence implies that U is an echelon form of A, and hence that
Ax = 0 has the same solution set as Ux = 0. So we can proceed immediately
to back substitution. The variables x3 and x4 are free, and we obtain

x2 = −2x3 + 44,

x1 − 3(−2x3 + 4x4)− 8x3 + 5x4 = 0⇒ x1 = 2x3 + 7x4.
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Hence, the general solution to Ax = 0 in parameter form is

x1 = 2x3 + 7x4, x2 = −2x3 + 4x4, x3, x4 ∈ R.

In order to express this is in parametric vector form we write









x1

x2

x3

x4









=









2x3 + 7x4

−2x3 + 4x4

x3

x4









= x3 ·









2
−2
1
0









+ x4 ·









7
4
0
1









.

Hence the solution set to Ax = 0 is given, in parametric vector form, by















x3 ·









2
−2
1
0









+ x4 ·









7
4
0
1









: x3, x4 ∈ R















.

A more compact way of writing this set is as

Span{[2 − 2 1 0]T , [7 4 0 1]T}.

Obs! The advantage of writing the solution set in parametric vector form is
that it makes it clearer what the solution set “looks like”. In the above exam-
ple, it is a plane through the origin in R

4, spanned by the vectors (2,−2, 1, 0)
and (7, 4, 0, 1). This way of writing things will also prove useful when we get
to Sections 4.2, 4.3 and 4.6, for answering a question like “Find a basis for
the nullspace of the matrix A”.

24. False, false, true, true, true.
26. Every x ∈ R

3 is a solution.

1.7

22. True, true, false, false.
24. The echelon form must be upper triangular, with non-zero entries on
the main diagonal.
26. The given conditions imply that a1,a2,a3 are linearly independent.
Then, in the echelon form, the fourth row will consist entirely of zeroes, and
the first three rows will look as in Q.24.
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28. Four (if there were a row of zeroes in the echelon form of the matrix,
which we’ll call A, then there would be no solution to Ax = b for some b).
30. n.
34. Well, v1 could be the zero vector. If not, the statement will be true.
36. Not necessarily, as {v1,v2} could already be linearly dependent. If not,
then the statement will be true (see Q.26).
38. True. Any subset of a linearly independent set of vectors is linearly
independent. Equivalently, any superset of a linearly dependent set of vectors
is linearly dependent.

1.8

22. True, true, false (it’s an ‘existence’ question), true, true.
32. To prove that a transformation T is not linear, it suffices to exhibit ONE
example of a pair of vectors x and y, and a pair of scalars c1, c2 such that

T (c1x + c2y) 6= c1T (x) + c2T (y). (1)

In the present case, take for example

x = (0, 1), y = (0,−1), c1 = c2 = 1.

Then

c1x + c2y = x + y = (0, 1) + (0,−1) = (0, 0),

so, by (1), we need to show that

T (0, 0) 6= T (0, 1) + T (0,−1). (2)

But according to the given formula for T , one has

T (0, 0) = (0, 0), T (0, 1) = (−2,−4), T (0,−1) = (−2, 4).

Hence the VL of (2) is just (0, 0), whereas the HL is (−4, 0), so VL 6= HL, as
desired.

34. To prove that a transformation T is linear, one must show that, for
EVERY possible choice of a pair of vectors x and y, and a pair of scalars
c1, c2,

T (c1x + c2y) = c1T (x) + c2T (y). (3)

4



So let x = (x1, x2, x3) and y = (y1, y2, y3), so that

c1x + c2y = (c1x1 + c2y1, c1x2 + c2y2, c1x3 + c2y3).

According to the given formula for T , one has on the one hand that the VL
of (3) is computed as

T (c1x + c2y) = T (c1x1 + c2y1, c1x2 + c2y2, c1x3 + c2y3)

= (c1x1 + c2y1, c1x2 + c2y2,−c1x3 − c2y3). (4)

On the other hand, the HL of (3) is computed as

c1T (x) + c2T (y) = c1T (x1, x2, x3) + c2T (y1, y2, y3) = c1(x1, x2,−x3) + c2(y1, y2,−y3)

= (c1x1 + c2y1, c1x2 + c2y2,−c1x3 − c2y3). (5)

From (4) and (5), we see that the VL and HL of (3) coincide, v.s.v.

1.9

4.

[

1 2
0 1

]

.

24. False (should say “into”), true, true, false (the statement just means
T is a function), false (there are 4 possible transformations, and they are
respectively : (i) the identity (a = d = 1), (ii) reflection in the horizontal
axis (a = 1, d = −1), (iii) reflection in the vertical axis (a = −1, d = 1), (iv)
reflection in the origin (a = d = −1)).
26. As shown in class, the standard matrix for T is the 2× 3 matrix

A = AT =

[

1 −2 3
4 9 −8

]

.

For T to be injective, we require that the system Ax = 0 have only the
trivial solution x = 0. But the row operation R2 7→ R2 − 4R1 reduces A to

the echelon form

[

1 −2 3
0 17 −20

]

. Here we have a free variable, so Ax = 0

will have infinitely many solutions. Thus T is not injective.
32. m (see Theorem 12).

5



2.1

16. True, false (true without the + signs), true, false, true.
22. In general, the columns of an m× n matrix M are linearly dependent if
and only if there is a non-zero vector x ∈ R

n such that Mx = 0.
So suppose the columns of B are linearly dependent. Thus there exists a

non-zero vector x such that Bx = 0. Multiply both sides of this equation on
the left by A, and we have A(Bx) = A · 0 = 0. But matrix multiplication is
associative, so A(Bx) = (AB)x. Thus (AB)x = 0 so, by the same reasoning
as before, the columns of AB must be linearly dependent.
24. Denote the columns of A by v1, ...,vn. Since these span R

3, there exist
scalars a1, ..., an, b1, ..., bn and c1, ..., cn such that

n
∑

i=1

aivi = e1,

n
∑

i=1

bivi = e2,

n
∑

i=1

civi = e3.

Let

a := [a1 a2 · · · an]T , b := [b1 b2 · · · bn]T , c := [c1 c2 · · · cn]T .

and let D be the n × 3 matrix with these as its columns, i.e.: D := [a b c].
Then AD = I3 by design.
26. Let b be given and multiply both sides of the equation AD = Im on the
right by b. This yields (AD)b = b. By associativity of matrix multiplication,
the left-hand side of this equals A(Db). But then we have indeed a solution
to Ax = b, namely x = Db.

2.2

10. False (rather they reduce In to A−1), true, false (should say reverse

order), true, true.
12. We have AD = I. Left-multiply both sides by A−1 to get A−1(AD) =
A−1I. On the one hand, A−1I = A−1, by definition of the identity ma-
trix. On the other hand, since matrix multiplication is associative, we have
A−1(AD) = (A−1A)D = ID = D. Hence, D = A−1, as required.
18. Right-multiply both sides by B−1 to get (AB)B−1 = (BC)B−1. By asso-
ciativity, the left-hand side equals A(BB−1) = AI = A. Hence, A = BCB−1.
32. The matrix is not invertible, since the row operations R2 7→ R2 + 4R1,

R3 7→ R3 + 2R1, R3 7→ R3 + 2R2 take it to the echelon form





1 2 −1
0 1 −1
0 0 0



.
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2.3

12. True, false (true with “onto”), true, false, false (to make the statement
true you need an extra hypothesis, for example (i) that A be invertible, or
(ii) that the equation be consistent for every b).
16. Because AT is also invertible, namely (AT )−1 = (A−1)T . See Theorem
2.2.6(c) and Theorem 2.3.8(e),(l).
24. The hypothesis implies that G is not invertible (Theorem 2.3.8(b)), hence
implies that the columns of G are linearly dependent (Theorem 2.3.8(e)).

2.8

20. Can’t be a basis, since there are 4 vectors there and R
3 is 3-dimensional.

22. False, false (rather the corresponding columns in A form a basis for
Col(A)), true, false, false.

2.9

18. True, false (it’s the number of free variables), true, true, true.
20. Use Theorem 2.9.14 (same as Theorem 4.6.14). We are told that n = 8
and that dim(Nul(A)) = 3. Hence, rank(A) = 5.
22. Use the Basis Theorem (Theorem 2.9.15 or 4.5.12). Since R

5 has dimen-
sion 5, if the vectors v1, ...,v5 were linearly independent, then they would
span the whole of R

5, not just a 4-dimensional subspace.
24. The rank will equal one if every row is a multiple of every other. Here’s

an example :





1 1 1 1
2 2 2 2
3 3 3 3



.

26. If rank(A) = 5, then dim(Col(A)) = 5 so, by the Basis Theorem again,
any five linearly independent columns must span the whole column space.
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3.1

20. The row operation is R2 7→ kR2. The determinant gets multiplied by k.
40. False, False (true if we replace ‘sum’ by ‘product’).

3.2

28. True, False, False, False.
32. det(rA) = rn(det A).

3.3

26. A typical vector v in the set p + S is of the form v = p + s, for some
vector s ∈ S. Applying T and using linearity we have T (v) = T (p + s) =
T (p) + T (s), which is just a typical element of T (p) + T (S) since, by defini-
tion, T (S) = {T (s) : s ∈ S}.
32. Let T1, T2 be the names of the tetrahedra with sides e1,e2,e3 and
v1,v2,v3 respectively. By the formula for the volume of a tetrahedron given
in the text, we have that Vol(T1) = 1/6, since it has perpendicular height
one and its base is an equilateral triangle of side-length one, thus of area 1/2.

Now the linear transformation defined by T (ei) = vi, i = 1, 2, 3 trans-
forms T1 to T2. By definition, the matrix of this transformation is MT =
[v1 v2 v3], i.e.: the 3× 3 matrix whose columns are the v-vectors. By the
geometric definition of determinant, we have that Vol T2 =
| det MT |· (Vol T1). Thus, by what we noted at the outset, it follows that

Vol(T2) = ±1

6

∣

∣

∣

∣

∣

∣

| | |
v1 v2 v3

| | |

∣

∣

∣

∣

∣

∣

,

the sign depending on whether the determinant is positive or negative.
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4.1

4. I will try so say this in words. Draw any line L in the plane not passing
through (0, 0). Pick any point P on the line and let v be the vector ~OP .

Consider 2v. This is the vector ~OQ, where Q is the point along the line
through O and P , which is twice as far away from O as is P and in the same
direction. Clearly, this point is not on your line L, thus proving that L is
not a subspace of R

2.

20 (a) You need to know that a sum of two continuous functions is con-
tinuous, as is a scalar multiple of a continuous function (see Adams, Section
1.4, Theorem 6).
(b) Suppose f(a) = f(b) and g(a) = g(b). Then, clearly, (f + g)(a) =
(f + g)(b). Also (cf)(a) = (cf)(b), so the set of functions under considera-
tion is closed under addition and scalar multiplication, hence a subspace of
C[a, b].

24. True, True, True (of itself),
False, though it is isomorphic to a subspace of R

3, for example the subspace
of all vectors whose z-component is zero,
False, since it doesn’t say what u and v are. The statement would be true
if it read instead : (ii) for any two vectors u and v in H, it is also the case
that u + v is in H (iii) if u is in H then so is cu, for any scalar c.

36. y is in Col(A) if and only if the system Ax = y has a solution. So
run the command “> A\y” and see if you get an error message. Alterna-
tively run “rref([A y])”. It turns out there is a solution, x = 1

5
[−1 − 2 3]T .

In other words,

y = −1

5









3
8
−5
2









− 2

5









−5
7
−8
−2









+
3

5









−9
−6
3
−9









.

4.2

26. True, True, False, True, True, True (don’t bother yet as to why).
30. Let w1 and w2 be any two vectors in the range of T and c any scalar.
We must show that both w1 + w2 and cw1 are in the range of T .
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Since both w1 and w2 are in the range of T there exist, by definition,
vectors v1 and v2 in V such that

T (v1) = w1, T (v2) = w2.

But T is linear, thus

T (v1 + v2) = T (v1) + T (v2) = w1 + w2

and

T (cv1) = cT (v1) = cw1.

This equations show that both w1 + w2 and cw1 are in the range of T , as
desired.

4.3

4. The matrix with these three vectors as its columns can be Gauss-reduced,
via the row operations

R1 7→
1

2
R1, R2 7→ R2 + R1, R3 7→ R3 −R1, R3 7→ 2R3 + R2,

to the echelon form




1 1 −4
0 −2 1
0 0 17



 .

Since we have a pivot in each column, the three vectors are linearly indepen-
dent and form a basis for R

3.
10. The variables x4 and x5 are free. Back substitution can be verified to
yield

x3 = 2x5, x2 = x4 + 2x5, x1 = −2x4 − 3x5,

from which we can further calculate that {[−2 1 0 1 0]T , [−3 2 2 0 1]T} is a
basis for the nullspace.
22. False, True, True, False, False (rather the corresponding columns in A
itself).
30. Let A be the n × k matrix which has these vectors as its columns.

10



If these vectors formed a basis for R
n then, in particular, they would be

linearly independent. This would mean that Nul(A) would contain only the
zero vector. But since A has more columns than rows, there will remain
at least one free variable after Gauss elimination on A, and thus Nul(A)
contains non-zero vectors (see Section 1.5, for example, though I don’t know
what theorem exactly he wants you to use (and it doesn’t matter !)).
36. Let A be the matrix with u1,u2,u3 as its rows, let B be the matrix
with v1,v2,v3 as its rows, and let C be the 6-row matrix got by adjoining B
below A - in Matlab one would write “C = [A; B]”. Now compute RREF
for each matrix. One obtains

RREF(A) =





1 0 1 −2
0 1 −1/2 1/2
0 0 0 0



 , RREF(B) =





1 0 0 16/3
0 1 0 −32/3
0 0 1 23/3



 ,

RREF(C) =

















1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

















.

The non-zero rows in these three matrices form bases for, respectively, H,
K and H + K. In particular, H + K = R

4, whereas dim(H) = 2 and
dim(K) = 3.
38. Actually, you don’t need Matlab to solve this exercise. If we can
find seven numbers t1, ..., t7 such that the values ai := cos ti are all distinct,
then we’ll have a 7 × 7 system Ax = 0, where x = [c0 c1 · · · c6]

T and A
is a Vandermonde matrix. Since a Vandermonde matrix is known to be
invertible (see Supplementary Exercise 11(b) in Chapter 2, plus a bunch of
other exercises in the book on Vandermonde matrices (check index at back))),
this will imply that the system has only the trivial solution, which is what
we need to show. The point is, it’s pretty obvious one can find seven (indeed,
as many as you want) values of t for which the corresponding values of cos(t)
are all distinct, since the range of the function cos(t) is the whole interval
[−1, 1].
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4.4

10.





3 2 1
0 2 −2
6 −4 3



.

16. True, False (other way round), True (namely, if the plane passes through
the origin).

4.5

6. Write out the subspace more explicitly as














a ·









3
0
−7
−3









+ b ·









0
−1
6
0









+ c ·









−1
−3
5
1























.

The dimension of the subspace thus equals the rank of the matrix









3 0 −1
0 −1 −3
−7 6 5
−3 0 1









.

The row operations

R3 7→ 3R3 + 7R1, R4 7→ R4 + R1, R3 7→ R3 + 18R2,

reduce the matrix to the echelon form








3 0 −1
0 −1 −3
0 0 −46
0 0 0









.

Hence the rank is 3.
14. The column space has dimension 4 (columns 1,4,5,7 form a basis),
whereas the nullspace has dimension 3 (variables x2, x3, x6 are free).
20. False (see 4.1.24(d)), False (rather the number of free variables), False,
False (see 19(d)), True.
30. False, True, False.
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4.6

18. False (see 4.3.22(e)), False, True, True, True.
30. They must be equal, since consistency means that b is a linear combi-
nation of the columns of A, hence adding b as a column to the matrix does
not increase the dimension of its column space.

4.7

10. We have that

C P←B = [c1 c2]
−1[b1 b2] =

[

4 3
2 9

]−1 [

6 4
−12 2

]

=

=
1

30

[

9 −3
−2 4

] [

6 4
−12 2

]

=
1

30

[

90 30
−60 0

]

=

[

3 1
−2 0

]

.

On the other hand,

BP←C =
(

C P←B
)−1

=

[

3 1
−2 0

]−1

=
1

2

[

0 −1
2 3

]

.

12. True, False (rather it satisfies [x]C = P [x]B).

13



5.1

6. Compute





3 6 7
3 2 7
5 6 4









1
−2
2



 =





5
13
1



 .

The right-hand side is not a multiple of [1 − 2 2]T , hence the latter is not an
eigenvector of the matrix.
22. False (it’s true if x is not the zero vector), False (opposite true), True,
False, True.

5.2

18. We have

A− 4I4 =









0 2 3 3
0 −2 h 3
0 0 0 14
0 0 0 −2









.

The row operations R2 7→ R2 + R1 and R4 7→ 7R4 + R3 produce the echelon
form









0 2 3 3
0 0 h + 3 6
0 0 0 14
0 0 0 0









.

For the eigenspace to be 2-dimensional, we require that the nullspace of this
matrix be 2-dimensional. This happens if and only if h + 3 = 0, i.e.: if and
only if h = −3.
20. We know that for any matrix M it holds that detM = det MT . Let λ
be a scalar. Then

det(A− λI) = det(A− λI)T = det(AT − λI).

Thus det(A− λI) = 0 if and only if det(AT − λI) = 0. In other words, λ is
an eigenvalue of A if and only if it is an eigenvalue of AT , v.s.v.
22. False (the volume equals | det A|), False, True,
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False : as an example, take

[

1 1
0 1

]

. This is diagonal, so its only eigenvalue

is λ = 1. The row replacement R2 7→ R2−R1 produces the matrix

[

1 1
−1 0

]

.

One can check that the characteristic polynomial for this matrix is λ2−λ+1,
so there are two complex eigenvalues λ1,2 = 1

2

(

1±
√

3i
)

.
24. Similarity means that there exists an invertible matrix P such that
B = P−1AP . Then

det B = det(P−1AP ) = (det P−1)(det A)(det P ) =

(

1

det P

)

(det A)(det P ) = det A, v.s.v.

30. The command “poly(A)” produces the coefficients of the characteris-
tic polynomial of a matrix A, whereas the command “eig(A)” produces its
eigenvalues. Using short format, I obtained the following table of values :

a p(t) λ1, λ2, λ3

32 t3 − 4t2 + 5t− 2 2, 1, 1
31.9 t3 − 4t2 + 3.8t− 0.8 2.7042, 0.2958, 1
31.8 t3 − 4t2 + 2.6t + 0.4 3.1279,−0.1279, 1
32.1 t3 − 4t2 + 6.2t− 3.2 1.5± 0.9747i, 1
32.2 t3 − 4t2 + 7.4t− 4.4 1.5± 1.4663i, 1

A couple of things are noteworthy :
(i) 1 is always an eigenvalue, because in the matrix A − I3, the second

row is −4

7
of the first row.

(ii) We can see that if we replace a by a + 0.1, then the coefficients of t0

and t1 in the characteristic polynomial change by −1.2 and +1.2 respectively.
Hence, one can verify that, for arbitrary a, we will have p(t) = t3 − 4t2 +
(−379 + 12a)t + (382− 12a).

5.3

22. False (true if we add the words ‘linearly independent’), False (converse
true), True, False.
28. That the n× n matrix A has n linearly independent vectors means that
it is diagonalisable, i.e.: A = PDP−1 for some invertible matrix P and some
diagonal matrix D. But then, by Theorems 2.1.3(d) and 2.2.6(c), we have

AT = (PDP−1)T = (P−1)T DT P T = (P T )−1DP T ,
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where we have also used the fact that DT = D, since D is diagonal. Let
Q := P T . We have shown that AT = QDQ−1. Since Q is invertible, we’ve
shown that AT is also diagonalisable, hence it also has n linearly independent
eigenvectors (namely the columns of Q, which are the rows of P ).

5.4

6. We have

T (p(t)) = p(t) + 2t2p(t) = (1 + 2t2)p(t). (6)

(a) From (6) it follows that

T (3− 2t + t2) = (1 + 2t2)(3− 2t + t2) = 3− 2t + 7t2 − 4t3 + 2t4.

(b) It’s required to show, for all polynomials p1(t), p2(t) ∈ P2 and for all
scalars c1, c2 ∈ R, that

T (c1p1(t) + c2p2(t)) = c1T (p1(t)) + c2T (p2(t)). (7)

Using (6), we can verify (7) as follows:

VL = T (c1p1(t) + c2p2(t))

= (1 + 2t2)(c1p1(t) + c2p2(t))

= c1

[

(1 + 2t2)p1(t)
]

+ c2

[

(1 + 2t2)p2(t)
]

= c1T (p1(t)) + c2T (p2(t)) = HL, v.s.v.

(c) Let B := {1, t, t2} and C := {1, t, t2, t3, t4}, and let [T ]B,C denote the
matrix for T w.r.t. these bases for P2 and P4 respectively. Then, by definition,

[T ]B,C =
(

[T (1)]C [T (t)]C [T (t2)]C
)

, (8)

in other words, the columns of the matrix are obtained by evaluating T on
each vector in the basis B and writing the results in terms of the basis C.

By (6), we have

T (1) = 1 + 2t2 = (1 0 2 0 0)T ,

T (t) = t + 2t3 = (0 1 0 2 0)T ,

T (t2) = t2 + 2t4 = (0 0 1 0 2)T .

16



Substituting into (8) we get

[T ]B,C =













1 0 0
0 1 0
2 0 1
0 2 0
0 0 2













.

12. It follows from what we did in lectures about base-change for linear
transformations that

[T ]B = P−1AP,

where P is the matrix whose columns are the vectors in the basis B, i.e.:
P = [b1 b2]. Hence, in the present exercise,

[T ]B =

[

0 −1
1 2

]−1 [

−6 −2
4 0

] [

0 −1
1 2

]

= · · · =
[

−4 0
2 −2

]

.

Note that, what this means explicitly is that

Ab1 = T (b1) = −4b1 + 2b2 and Ab2 = T (b2) = 0 · b1 − 2b2 = −2b2.

One can multiply out and check that these equations hold.

20. If A is similar to B it means that there is some invertible matrix X
such that B = X−1AX. Now square both sides of this equation, and we get

B2 = (X−1AX)2 = (X−1AX)(X−1AX) = (X−1A)(XX−1)(AX)

= (X−1A)In(AX) = X−1AAX = X−1A2X.

In other words, there is some invertible matrix, namely the same matrix X,
such that B2 = X−1A2X. This, by definition of similarity, means that A2 is
similar to B2, v.s.v.

32. The diagonaising basis consists of eigenvectors of A. These are found by
running the command “[V,D] = eig(A)”. When I did this in short format I
got

V =









−0.6325 0.2626 −0.5968 0.6614
−0.3162 −0.1313 −0.5613 −0.5203
0.3162 −0.9191 −0.5731 −0.1264
−0.6325 0.2626 −0.0158 0.5252









, D =









5 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 −2









.
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The columns of V form the desired basis. Note that it’s pretty clear that we
could choose simpler eigenvectors in the first and second columns, namely
[−2 − 1 1 − 2]T and [2 − 1 − 7 2]T respectively, though there are round-off
errors in the first column. One can check directly that these integer-valued
alternatives are still eigenvectors for λ1 = 5 and λ2 = 1 respectively. No such
simplification seems to be possible with the third and fourth columns of V ,
though we can drop all the minus signs in the third column.

5.7

6. The solution is

x(t) =

[

x1(t)
x2(t)

]

=

[

5e−t − 2e−2t

5e−t − 3e−2t

]

= 5

[

1
1

]

e−t −
[

2
3

]

e−2t.

The origin is an attractor and the direction of greatest attraction is along
the line 2y = 3x.
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6.1

6. 5

49





6
−2
3



.

8. 7.
20. True, false (rather |c|), true, true, true.
24. We have

||u± v||2 = (u± v) · (u± v) = u · u + v · v ± 2(u · v) = ||u||2 + ||v||2 ± 2(u · v).

When we add, the terms ±2(u · v) cancel and we’re left with the right-hand
side.
26. W is the nullspace of the 1 × 3 matrix with the single row uT . So he’s
probably referring to some theorem that says that the nullspace of an m×n
matrix is a subspace of R

n. Geometrically, W is a plane through the origin
with normal vector u. Its equation is 5x− 6y + 7z = 0.
28. The hypothesis is that y · u = y · v = 0. Now let w ∈ Span{u,v}.
Then there exist real numbers c1, c2 such that w = c1u + c2v. But then, by
Theorem 6.1.1(b,c), we have

y ·w = y · (c1u + c2v) = c1(y · u) + c2(y · v) = c1 · 0 + c2 · 0 = 0, v.s.v.

30. Well, just follow the steps outlined, and employ Theorem 6.1.1.
34. If we compute rref(A), then the non-zero columns form a basis for the
rowspace. Using rational format, this gave me

R =





1 0 5 0 −1/3
0 1 1 0 −4/3
0 0 0 1 1/3



 .

The command “null(A)” produces an (orthonormal) basis for the nullspace.
Using short format, this gave me

N =













−0.8120 −0.5340
0.3504 −0.6888
0.1894 0.0762
−0.1349 0.1532
0.4048 −0.4595













.
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By Theorem 6.1.3, we should have RN = O3×2. In fact, due to roundoff
errors, here is what Matlab returned, in short format :

RN = 10−15 ·





0.2776 −0.8327
0.1110 −0.2220
−0.0555 0



 .

6.2

24. False, false (true if ||ui|| = 1 for each i = 1, ..., p), true, true, true.

6.3

22. True, true, true, false (rather projW y), false (true when n = p).

6.4

18. True, true, true.
22. I don’t want to write out all the details, but I’ll give you the idea. What
you need to show is that, for any x1,x2 ∈ R

n and any c1, c2 ∈ R, one has

projW (c1x1 + c2x2) = c1 (projW x1) + c2 (projW x2) . (9)

To verify (9), employ Theorems 6.1.1 and 6.3.8.

6.5

18. True, false, true, false (true if AT A is invertible), ?? (don’t understand
what he means by ‘reliable’), True (I guess).

6.6

4. y = 1

10
(43− 7x).

10 (a) The model is Ax = b where

A =













e−.02t1 e−.07t1

e−.02t2 e−.07t2

e−.02t3 e−.07t3

e−.02t4 e−.07t4

e−.02t5 e−.07t5













, x =

[

MA

MB

]

, b =













y1

y2

y3

y4

y5













.
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15, 16. In matrix form, we’re being asked to compute

x̂ = (AT A)−1(AT b), (10)

where

A =













1 x1

· ·
· ·
· ·
1 xn













, x̂ =

[

β̂0

β̂1

]

, b =













y1

·
·
·

yn













.

One may verify that the so-called normal equations are obtained by instead
writing (10) in the form (AT A)x̂ = AT b and multiplying out the matrices.
If we invert AT A, and instead solve (10) explicitly, it turns out we get

β̂0 =
(
∑

x2)(
∑

y)− (
∑

x)(
∑

y)

n(
∑

x2)− (
∑

x)2
, β̂1 =

−(
∑

x)(
∑

y) + n(
∑

xy)

n(
∑

x2)− (
∑

x)2
.

21



7.1

2. Not symmetric.
4. Symmetric.
6. Not symmetric.
8. The matrix is orthogonal and

A−1 = AT =

[

1/
√

2 1/
√

2

−1/
√

2 1/
√

2

]

.

10. The matrix is not orthogonal since, though its columns are pairwise
orthogonal vectors, they are not unit vectors - each has length 3. Note that
this implies that 1

3
A is an orthogonal matrix, which is also symmetric. Hence,

we can still easily write down A−1, since

A−1 =

(

3 · 1
3
A

)−1

= 3−1 ·
(

1

3
A

)−1

=
1

3
·
(

1

3
A

)T

=
1

3
·
(

1

3
A

)

=
1

9
A =

1

9





−1 2 2
2 −1 2
2 2 −1



 .

24. Check directly that Av1 = 10v1 and Av2 = v2. Thus we have at least
two eigenvalues, λ1 = 10 and λ2 = 1. The matrix A is symmetric, so we
know it must be orthogonally diagonalisable. Therefore, there must be a
third eigenvector v3, which is orthogonal to both v1 and v2. But, since we’re
working in R

3, there is only one possibility for such a vector, up to a scalar
multiple, namely we can take

v3 = v1 × v2 =

∣

∣

∣

∣

∣

∣

~i ~j ~k
−2 2 1
1 1 0

∣

∣

∣

∣

∣

∣

= −~i +~j − 4~k.

Thus v3 =





−1
1
4



 must be an eigenvector. Now check directly that Av3 =

v3. Thus the eigenvalue here is also λ2 = 1, so this eigenspace is two-
dimensional.

We then have an orthogonal diagonalisation

A = PDP T ,
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where

D =





10 0 0
0 1 0
0 0 1



 , P =





| | |
u1 u2 u3

| | |





and u1,u2,u3 are the normalised eigenvectors, i.e.:

u1 =
v1

||v1||
=

v1

3
, u2 =

v2

||v2||
=

v2√
2
, u3 =

v3

||v3||
=

v3√
18

.

Thus finally

P =





−2/3 1/
√

2 −1/
√

18

2/3 1/
√

2 1/
√

18

1/3 0 −4/
√

18



 .

26. True, true, false, true.
28.

(Ax) · y = (Ax)T y = (xT AT )y
A=AT

= (xT A)y = xT (Ay) = x · (Ay), v.s.v.

7.2

22. True, False (P must be a matrix which orthogonally diagonalises A),
False (without some extra conditions on A and c), False, True.
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