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7.2 QUADRATIC FORMS

Until now, our attention in thig
of squares encountered in Chapter 6
expressions, called quadraiic
to engineering (in design criteria and Optimization) and signal brocessing (as output ;
noise power), They also arise, for example, in physics (as potential and kinetic energy),

inR” can be computed by an expression of the form Q (x)

The simplest example of a nonzerg quadratic form j

EXAMPLE 1 1oy . [xl

& A= [g
SOLUTION

b.

SOLUTION

a xUx =[x, X:z][

There are two —2 entries in
entry in 4 is in boldface type.

EXAMPLE 2 For x in R3, let
this quadratic form as x74x.

melric, the coefficient of
{(j.1)-entries in 4. The coefficient of Xpx3is 0, It is readily checked
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text has focused on linear equations, except for the sumg

economics (as utility functions),
athematical background for such
mairices,

whose value at a vector x
= x"AX, where A is an 5 x n
matrix A is called the matrix of the quadratic form.

S Q) =xT7x — IIx)2. Ex-
Symmetric matrix A and the Quadratic

. J Compute x%x for the following matrices:
Xy

]

b. 4= [
4x
1] = {xl )_'2 ][3x21J == 43:12 + 3."(3. [

)L

A. Watch how they enter the caleulations, The (1,2)- i

3 %2][1-:]:{,“ sz[ }

2 7 X3
T 222) + 02(~2%; + Txy)

3)5[2 —2xyxp — 2931 + 7x§

0
3

3
-2

—2
7

]

4
0

¥

3x; - 2x,
—2)&?; + 7JC2

XA = { x| xz}[H

x1(3xy

_ ::3xf-4x;x2£—7x§

X) = 5x 4 3x2 4 242 _ XpX2 + 8x3x3. Write
i 2 3

The coefficients of xf, x2, xZ go on the diagonal of 4.
Yixj for i £ f

To make 4 syn-
must be split evenly between the (i, 7)- and
that

Q) = x"dx =[x,
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EXAMPLE 3 Let O(x) = x3 —8x1x2— 5x2. Compute the value of Q(x) for x =

EIETE
SOLUTION
Q(=3,1) = (-3) = 8(-3)(1) - 5(1)* =28
0(2,-2) = (2 - 8()(~2) - 5(-2)" = 16
Q(1,3) = (1)? — 8(1)(-3) = 5(--3)> = —20 B

il

Tn some cases, quadratic forms are easier to use when they have no cross-product
terms—that is, when the matrix of the quadratic form is a diagonal maltrix. Fortunately,
the cross-product term can be eliminated by making a suitable change of variable.

Change of Variabie in a Quadratic Form

If x represents a variable vector in R, then a change of variable is an equation of the . -

form .
x = Py, or equivalently, y = Pix e

where P is an invertible matrix and y is a new variable vector in R?, Here y is the
coordinate vector of x relative to the basis of R” determined by the columns of P, (See-
Section 4.4.) -

If the change of variable (1) is made in a quadratic form x7A4x, then

xThx = (PY)A(Py) = yPTAPy = y'(PTAP)y

and the new matrix of the quadratic form is PTAP. Since A is symmetric, Theoge_m 2
guarantees that there is an orthogonal matrix P such that PTAP is a diagonal matrix
and the quadratic form in (2) becomes y'Dy. This is the strategy of the next examp

EXAMPLE 4 Make a change of variable that transforms the quadratic form i
ample 3 into a quadratic form with no cross-product term. :

SOLUTION The matrix of the quadratic form in Example 3 is

=[]

The first step is to orthogonally diagonalize A. Its gigenvalues turn out to be
A = —7. Associated unit eigenvectors are :

I BTV R BV |
A=3 [-1/«5]’ A== {2/«/5} .

stine

These vectors are automatically orthogonal (because they correspond 10 di
. values) and so provide an orthonormal basis for R%. Let

, P:[ 2//5 1/£], -D:[g _g]

—1/5 2[5

of variable is

|

_ ] * i Hh
x = Py, where X _i[l‘z]' and ¥y = {y_z
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Then
X}~ Bxyxy — 5x7 = xTdx = (Py)"A(Py)
=y PAPy = yDy |
=3y} ~ 7y E
To illustrate the meaning of the equality of quadratic forms in Example 4, we can
compute Q(x) for x = (2,--2) usitig the new quadratic form. First, since x = Py,

y= P lx= pTy
S0 .
N 2/V5 —1/43 [ 2]% 6/+/3
B RV R | Y il By~
Hence

397~ 793 = 3(6//5) — 1(~2//3) = 3(36/5) — 7(4/5)
= 80/5 == 16 '

This is the value of Q(x) in Example 3 when x = (2, ~2). See Fig. 1.

ﬂ2

Multiplication ; R
by P

0 16

R2

FIGURE 1 Change of variable in x74x.

Example 4 illustrates the following theorem. The proof of the theorem was essen-
tially given before Example 4.

THEQREM 4 - 1-_Ti_1e_'P_f_inc':ipaf-Axés’-‘i’hedreh T _
CLet A be an # x rlz.,:s_ymhmt_ric matrix, Then there is an orthogonal change of
vaviable, X = Py, that transforms the quadratic form x"dx into a quadratic form.
-:"\IY.T‘D‘).’—{’.‘_’iih'nq_'ergg_:P;.Odugt term, o Aiadie fom

The columns of P in the theorem are called the principal axes of the quadratic
form x"Ax. The vector ¥ is the coordinate vector of x relative to the orthonormat basis
of R” given by these principal axes.

A Geometric View of Principal Axes

Suppose Q(x) = x’Ax, where 4 is an invertible 2 % 2 symmetric matrix, and let ¢ be a
constant. It can be shown that the set of all x in R2 that satisfy

xUdx = ¢ (3)
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either corresponds to an ellipse (or circle), a hyperbola, two intersecting lines, or a single
point, or contains no points at all. If A is a diagonal matrix, the graph is in standard
position, such as in Fig. 2. If A is not a diagonal matrix, the graph of equation (3} is

B X, x
b R
~
~
Sy ——
I
a | { ,," 4
e
2 .2 2 2
x X X X
D2, axbeD Lo, axb>0
a? b‘Z !22 bZ
ellipse hyperbola

FIGURE 2 An eilipse and a hyperbola in standard position.

rotated out of standard position, as in Fig. 3. Finding the principal axes (detemli'n_:g'd._ ::
by the eigenvectors of A) amounts to finding a new coordinate system with respect fo -

which the graph is in standard position.

() 5x% —dxpx, + :"»x% =48 {b) x} - 8x,x, - 5x3 = 16

FIGURE 3 An ellipse and a hyperbola nof in standard position.
The hyperbola in Fig. 3(b) is the graph of the equation xUAx = 16, where A
matrix in Example 4. The positive yi-axis in Fig. 3(b) is in the direction of th

column of the matrix P in Example 4, and the positive y,-axis is in the directio
second column of P,

EXAMPLE B The ellipse in Fig. 3(a) is the graph of the equation 5x2 ;
Sx% = 48, TFind a change of variable that removes the cross-product term

equation.

SOLUTION The matrix of the quadratic form is 4 = [ H_g '2 ]
A turn out to be 3 and 7, with corresponding unit eigenvectors

_|uv2 | -2
uy = l/ﬁ, uy = l/«/ﬁ
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Let? =[m w]= i ; g “ij ﬁ . Then P orthogonally diagonalizes 4, so the

change of variable x = Py produces the quadratic form y” Dy = 3y? + 7y2. The new
axes for this change of variable are shown in Fig. 3(a).

Classifying Quadratic Forms

When A is an # X » matrix, the quadratic form O(x) = x74x is a real-valued function
with domain R™. Figure 4 displays the graphs of four quadratic forms with domain R?.
For each point x = (x1, x3) in the domain of a quadratic form Q, the graph displays the [
point {x1, x2, 2} where z = Q(x). Notice that except at x = 0, the values of Q(x) are ‘
all positive in Fig. 4(a) and all negative in Fig. 4(d). The horizontal cross-sections of '
the graphs are ellipses in Figs. 4(a) and 4(d) and hyperbolas in Fig. 4(c). |

@ z=3x2+ 72 {d) z=~3x3-7x]

FIGURE 4 Graphs of quadratic forms.

The simple 2 x 2 examples in Fig. 4 illustrate the following definitions.

DEFIMITION A quadratic form @ is: |
a. positive definite if Q(x) > 0 foralix # 0,

b. negative definite it Q(x) < 0 for allx # 0, |
c. indefinite if Q(x) assumes both pbs_itive and negative values, !

Also, () is said to be positive semidefinite if Q(x) > 0 for all x, and to be negative
semidefinite if Q(x) < 0 for all x. The quadratic forms in parts (a) and (b} of Fig, 4 are
. both positive semidefinite, but the form in (a) is better described as positive definite.
‘Theorem 5 characterizes some quadratic forms in terms of eigenvalues, '

THEOREM 5 '._:.__Quaclir"é_ttic.Forms and Eigen\('él'tlé_é" E _ .
' 'L_e__t.ﬂ- be an nxn symm.etnic'n_iétami;(Y Then a quadratic form x"Axis: -
g a ; 'poéit_ivé _d__éﬁhite if and cnly_if the eigenvalues of A are all positi_vé, 7
b, negative definite if and only if the eigenvalues of A arc all negative, or .’
" indefinite if and only if A has both positive and negative eigenvalues. . -
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PROOF By the Principal Axes Theorem, there exists an orthogonal change of variable
X = Py such that '

Q) = xAx = y" Dy = Miy? + Aoy + -+ + 4,32 )

where Ay, ..., A, are the eigenvalues of A. Since P is invertible, there is a one-to-
one correspondence between all nonzero x and all nonzero y. Thus the values of )
for x # 0 coincide with the values of the expression on the right side of (4), which
is obviously controlied by the signs of the eigenvalues Aj,..., A,, in the three ways
described in the theorem. , "

EXAMPLE 6 1s O(x) = 3x]  2x3 + x# 4 dxyx, + 4x,:x3 positive definite?
i 3+ X3

SOLUTION Because of ail the plus signs, this form “looks” positive definite. But the
mafrix of the form is

3 2 0
A=}12 2 2
0 2 1

and the eigenvalues of A turn out to be 5, 2, and —1. 8o (J is an indefinite quadratic.

Indefinite . form, not positive definite. ( e _13?__ :_:

The classification of a quadratic form is often carried over to the matrix of the form, ‘

' Thus a positive definite matrix A is a symmetric matrix for which the quadratic form .- :
x"Ax is positive definite, Other terms, such as positive semidefinite matrix, are defined 720
analogously. Fa

= MUMERICAL MOTE

A fast way to determine whether a symmetric matrix 4 is positive definite is.
to attempt to factor A in the form A = RTR, where R is upper triangular with_
positive diagonal entries. (A slightly modified algorithm for an LU factorization
is one approach.) Such a Cholesky factorization is possible if and only if A is
positive definite. See Supplementary Exercise 7 at the end of Chapter 7.

[PRAGTICE PROBLEM

Describe a positive semidefinite matrix A in terms of its eigenvalues.

7.2 EXERCISES

. ' 5 13 : 5 1
1, Compute the quadratic form x%ix, when 4 = [ ] < :
e 4 /3 1 a X=]| 10 b, x=| —1 e x=11/
a]’ld 5

a. 10x? — 6xyx; — 3} b. 5x] +3x1%,

4. Find the matrix of the quadratic form. Assur
and ' a. 20x? - 1Sxx, — 10x b, xw




5. Find the matrix of the quadratic form. Assume x is in R
a. 8xl+ 7x— 3x3 — 6x17 + dxyxy — 23333
b, dxyx; + 6xpx3 — 8x233

6. Find the matrix of the quadratic form. Assume xisin B3,
& 5xf = x3 -+ Tad b Sxix — 3x,xs
b X3 —dxx, + 4y

7. Make a change of variable, x — Py, that transforms the
quadratic form x{ 4 10x,x; + x2 into a quadratic form with
1o cross-product term. Give P and the new quadratic form,

8. Let 4 be the matrix of the quadratic form
93-‘!2 + 7X§ + 11)5} ‘_:.8}:{:(:2 + .8)61.\’3

It can be shown that the eigenvalues of A are 3,9, and 15.
Find an orthogonal matrix P such that the change of variable
X = Py transforms xAx into a quadratic form with no cross-
product term. Give P and the new quadratic form,

Classify the quadratic forms in Bxercises 9-18. Then make a
change of variable, x = Py, that transforms the quadratic form
into one with no cross-produet term, Write the new guadratic
-form, Construct P using the methods of Section 7.1,

18, 9x} —8x1x, + 342
1 25} 4 10,3, + 2x2 120 —5x} + dxy 3 - 252
X} — 6312, + 9x2 14, 8x]+ 6xyxy

[M] —2x] — 6x2 — 9x3 — 9x? 4 dxyxy + dxyx3 + dxyxy 4
6.7{?33?4

M) 43 4 42 A2 4 B 4 3x3%s — 4% +
4I2Jt‘3

I ST a2 2 2 4 O — 120, + 12x%3 + Y3
M) 11} — 52 — 1230, — 120yx — 1234 — 2x3%,

©9 3k - 4y x5 _-T-{}6x22

What is the largest possible value of the guadratic
~ form S5x} 4 8x2 if x = (x;, ) and x'x — I, that is, if
©x{ 4+ x} =12 (Try some examples of x.)

What is the largest value of the quadratic form Sxt—3x%if

xx = i?

In Exercises 21 and 22, matrices are » X n and vectors are in R,
Mark each statement ‘True or False. Justify each answer.
L"a, The matrix of a quadratic form is a symmetric matrix,

b. A quadratic form has no cross-product terms if and only
.- if the matrix of the quadratic form is a diagenal matrix,

¢. 'The principal axes of a quadratic form x"4x are eigenvec-
- tors of 4.

d. A positive definite quadratic form O satisfies Q(x) > 0
F forall x in R".
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e. If the eigenvalues of a symmetric matrix 4 are all posi-
tive, then the quadratic form x74x is positive definite.

f. A Cholesky factorization of a symmetric matrix 4 has
the form A = R7R, foran upper triangular matrix R with
positive diagonal entries,

22. a. The expression |[x|)? is a quadratic form,

I¥ 4 is symmetric and P is an orthogonal matrix, then
the change of variable x = Py transforms x"Ax into a
quadratic form with no cross-product term,

¢ HAisa2x2 symmetric matrix, then the set of x such
that x4x = ¢ (for a constant ¢) corresponds (o either a
circle, an ellipse, or a hyperbola.

d. An indefinite quadratic form is either positive semidefi-
nite or negative semidefinite, .

¢. If A is symmetric and the quadratic form x74x has only
negative values for x # 0, then the cigenvalues of A are
all negative.

Exercises 23 and 24 show how to classify a quadratic form
@(x) = x"Ax, when 4 = g j] anddet 4 = 0, without find-
ing the eigenvalues of 4.

23, If X, and A, are the eigenvalues of 4, then the characteristic
polynomial of A can be written in two ways: det(A — A1)
and {4 - A,)(% — X,). Use this fact to show that A; + 1, =
a + d {the diagonal entries of A}and LA, = det A,

24, Verify the following statements,
a. (2 is positive definite if det A > O and g > 0.
b, O is negative definite if det 4 > 0 and a <0,
¢. (7 isindefinite if det A < 0,

25. Show that if B is m x n, then BTH is positive semidefinite;
andif B isn x n and invertible, then BTB is positive definite,

26, Show thatifan s x # matrix 4 is positive definite, then there
€xists a positive definite matrix B suchthat 4 = BTR. [Hint:
Write A = PDPT, with PT = P, Produce a diagonal
matrix C such that D = C7C, and let B = PCPT. Show
that B works.]

27. Let A and B be symmetric # x n matrices whose eigenvalies
are all positive. Show that the eigenvalites of A + B are all
positive. [Hint: Consider quadratic forms.]

28. Let 4 be an 7 x # invertible symumetric matrix. Show that
if the quadratic form x"4x is positive definite, then so is the
guadratic form x’A!x. [Hint: Consider eigenvalues.]
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