Introduction

Euclid alone
Has looked on Beauty bare. Fortunate they
Who, though once only and then but far away,
Have heard her massive sandal set on stone.

Edna St. Vincent Millay (1923)

The origins of the natural numbers 1, 2, 3, 4, 5, 6, ... are lost in the mists of
time, We have no knowledge of who first realized that there is a certain concept of
“threeness” that applies equally well to three rocks, three stars, and thiee people.
From the very beginnings of recorded history, numbers have inspired an endless
fascination—mystical, aesthetic, and practical as well. It is not just the numbers
themselves, of course, that command attention. Far more intriguing are the rela-
tionships that numbers exhibit, one with another. 1t is within these profound and
often subtle relationships that one finds the Beauty! so strikingly described in Edna
St. Vincent Millay’s poem. Here is another description by a celebrated twentieth-
century philosopher,

Mathematics, rightly viewed, possesses not only truth, but supreme
beauty—a beauty cold and austere, fike that of sculpture, without ap-
peal to any part of our weaker nature, without the gorgeous trappings
of paintings or music, yet sublimely pure, and capable of a stern per-
fection such as only the greatest art can show. (Bertrand Russell, 1902)

The Theory of Numbers is that area of mathematics whose aim is to uncover
the many deep and subtle relationships between different sorts of numbers. To take
a simple example, many people through the ages have been intrigued by the square
numbers 1,4, 9, 16, 25, ... If we perform the experiment of adding together pairs

'Euclid, indeed, has looked on Beauty bare, and not merely the beauty of geometry that most
people associate with his name, Number theory is prominently feaiured in Books VII, VHI, and IX
of Euclid’s famous Elements.



2 Introduction

of square numbers, we will find that occasionally we get another square. The most
famous example of this phenomenon is

3% +4% = 5%,
but there are many others, such as
52 4122 =13%, 2024212 =292, 282 +45% = 532,

Triples like (3,4, 5}, (5, 12,13}, (20,21, 29), and (28, 45, 53) have been given the
name Pythagorean triples.> Based on this experiment, anyone with a lively curios-
ity is bound to pose various questions, such as “Are there infinitely many Pythago-
rean triples?” and “If so, can we find a formula that describes all of them?” These
are the sorts of questions dealt with by number theory.

As another example, consider the problem of finding the remainder when the

huge number
394778543 713921429837645

is divided by 54817263. Here’s one way to solve this problem. Take the number
32478543, multiply it by itself 743921429837645 times, use long division to di-
vide by 54817263, and take the remainder. In principle, this method will work,
but in practice it would take far longer than a lifetime, even on the world’s fastest
computers. Number theory provides a means for solving this problem, too. “Wait a
minute,” I hear you say, “Pythagorean triples have a certain elegance that is pleas-
ing to the eye, but where is the beauty in long division and remainders?” The
answer is not in the remainders themselves, but in the use to which such remain-
ders can be put. In a striking turn of events, mathematicians have shown how the
solution of this elementary remainder problem (and its inverse) leads to the cre-
ation of simple codes that are so secure that even the National Security Agency®
is unable to break them. So much for G.H. Hardy’s singularty unprophetic remark
that “no one has yet discovered any warlike purpose to be served by the theory of
numbers or relativity, and it seems very unlikely that anyone will do so for many
years.*

The land of Number Theory is populated by a variety of exotic flora and fauna,
There are square numbers and prime numbers and odd numbers and perfect num-
bers (but no square-prime numbers and, as far as anyone knows, no odd-perfect

*In fairness, it should be mentioned that the Babylonians compiled large tables of “Pythagorean”
triples many cemtories before Pythagoras was boin.

*The National Security Agency (NSA) is the arm of the United States government charged with
data collection, code making, and code breaking. The NSA, with a budget larger than that of the
CIA, is the single largest employer of mathematicians in the world.

*A Mathematicien’s Anoloev. §28. (3.H. Hardv. Camb. Univ. Press. 1040,
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numbers). There are Fermat equations and Pell equations, Pythagorean triples and
elliptic curves, Fibonacci’s rabbits, unbreakable codes, and much, much more. You
will meet all these creatures, and many others, as we journey through the Theory
of Numbers.

Guide for the Instructor

This book is designed 1o be used as a text for a one-semester or full-year course
in undergraduate number theory or for an independent study or reading course,
It contains approximately two semesters’ worth of material, so the instructor of a
one-semester course will have some flexibility in the choice of topics. The first 11
chapters are basic, and probably most instructors will want to continue through
the RSA cryptosystem in Chapter 18, since in my experience this is one of the
students’ favorite topics.

There are now many ways to proceed. Here are a few possibilities that seem to
fit comfortably into one semester, but feel free to slice-and-dice the later chapters
to fit your own tastes.

Chapters 20-32, Primitive roots, quadratic reciprocity, sums of squares, Pell’s
equation, and Diophantine approximation. (Add Chapters 39 and 40 on con-
tinued fractions if time permits.)

Chapters 28-32 & 43-48. Fermat’s equation for exponent 4, Pell’s equation, Di-
ophantine approximation, elliptic curves, and Fermat’s Last Theorem.

Chapters 29-37 & 39-40. Pell’s equation, Diophantine approximation, Gaussian
integers transcendental numbers, binomial coefficients, linear recurrences,
and continued fractions.

Chapters 19-25 & 36-38. Primality testing, primitive roots, quadratic reciproci-
ty, hinomial coefficients, linear recurrences, big-Oh notation. {This syllabus
is designed in particular for students planning further work in computer sci-
ence or cryptography.)

In any case, a good final project is to have the students read a few of the omitted
chapters and do the exercises.

Most of the nonnumerical nonprogramming exetcises in this book are designed
to foster discussion and experimentation. They do not necessarily have “correct”
or “complete” answers. Many students will find this extremely disconcerting at
first, so it must be stressed repeatedly. You can make your students feel more at
ease by prefacing such questions with the phrase “Tell me as much as you can
about ....” Tell vour students that accumulatine data and solving special cases are
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not merely acceptable, but encouraged. On the other hand, tell them that there is
no such thing as a complete solution, since the solution of a good problem always
raises additional questions. So if they can fully answer the specific question given
in the text, their next task is to look for generalizations and for limitations on the
validity of their solution.

Aside from a few clearly marked exercises, calculus is required only in two late
chapiers (Big-Oh notation in Chapter 38 and Generating Functions in Chapter 41).
If the class has not taken calculus, these chapters may be omitted with no harm to
the flow of the material.

Number theory is not easy, so there’s no point in trying to convince the stu-
dents that it is. Instead, this book will show your students that they are capable of
mastering a difficult subject and experiencing the intense satisfaction of intellectual
discovery. Your reward as the instructor is to bask in the glow of their endeavors.

Computers, Number Theory, and This Book

At this point T would like to say a few words about the use of computers in con-
junction with this book. I neither expect nor desite that the reader make use of a
high-level computer package such as Maple, Mathematica, PARI, or Derive, and
most exercises (except as otherwised indicated) can be done with a simple pocket
calculator. To take a concrete example, studying greatest common divisors (Chap-
ter 5) by typing GCD{M, N into a computer is akin to studying electronics by turn-
ing on a television set. Admittedly, computers allow one to do examples with large
numbers, and you will find such computer-generated examples scattered through
the text, but our ultimate goal is always to understand concepts and relationships.
So if I were forced to make a firm ruling, yea or nay, regarding computers, I would
undoubtedly forbid their use.

However, just as with any good rule, certain exceptions will be admiited. First,
one of the best ways to understand a subject is to explain it to someone else; so
if you know a little bit of how to write computer programs, you will find it ex-
tremely enlightening to explain to a computer how to perform the algorithms de-
scribed in this book. In other words, don’t rely on a canned computer package; do
the programming yourself. Good candidates for such treatment are the Euclidean
algorithm (Chapters 5-6) the RSA cryptosystem (Chapters 16-18), quadratic reci-
procity (Chapter 25), writing numbers as sums of two squares (Chapters 26-27),
primality testing (Chapter 19), and generating rational points on elliptic curves
{Chapter 43).

The second exception to the “no computer rule” is generation of data. Dis-
covery in number theory is usually based on experimentation, which may involve
examining reams of data to try to distinguish underlying patterns. Computers are
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well suited to generating such data and also sometimes to assist in searching for
patterns, and I have no objection to their being used for these purposes.

I have included a number of computer exercises and computer projects to en-
courage you to use computers propetly as tools to help understand and investigate
the theory of numbers. Some of these exercises can be implemented on a small
computer (or even a programmable calculator), while others require more sophis-
ticated machines and/or programming languages. Exercises and projects requiring
a computer are marked by the symbol & .

For many of the projects I have not given a precise formulation, since patt of
the project is to decide exactly what the user should input and exactly what form
the output should take. Note that a good computer program must include all the
following features:

o Clearly written documentation explaining what the program does, how to use
if, what quantities it takes as input, and what quantities it returns as output.

e Extensive internal comments explaining how the program works.

e Complete error handling with informative error messages. For example, if
a = b = 0, then the ged(a,b) routine should return the error message
“ged (0,0} is undefined” instead of going into an infinite loop or
returning a “division by zero” error.

As you write your own programs, try to make them user friendly and as versatile
as possible, since ultimately you will want to link the pieces together to form your
own package of number theoretic routines.

The moral is that computers are useful as a tool for experimentation and that
you can learn a lot by teaching a computer how to perform number theoretic calcu-
lations, but when you are first learning a subject, prepackaged computer programs
metrely provide a crutch that prevent you from learning to walk on your own.



Chapter 1

What Is Number Theory?

Number theory is the study of the set of positive whole numbers
1,283,485, 6,75 oy

which are often called the set of natural munbers. We will especially want to study
the relationships between different sorts of numbers. Since ancient times, people
have separated the natural numbers into a variety of different types. Here are some
familiar and not-so-familiar examples:

odd 1,3,5,7,9,11, ...

even 2,4,6,8,10,...

square 1,4,9,16,25,36, ...

cube 1,8,27,64,125, ...

prime 2,3,b,7,11,13,17,19,23,29,31, ...

composite 4,6,8,9,10,12, 14, 15,16, ...
1 (modulo4) 1,5,9,13,17,21,125,...

3 (modulo4) 3,7,11,15,19,23,27,...
triangular 1,3,6,10,15,21,...

perfect 6,128,496, ...

Fibonacei Lyt 28,6, 813,21, -

Many of these types of numbers are undoubtedly already known to you. Oth-
ers, such as the “modulo 4” numbers, may not be familiar. A number is said to be
congrueit to 1 (modulo 4) if it leaves a remainder of 1 when divided by 4, and siin-
itarly for the 3 (modulo 4) numbers. A number is called trianguolar if that number
of pebbles can be arranged in a triangle, with one pebble at the top, two pebbles
in the next row, and so on. The Fibonacci numbers are created by starting with 1
and 1. Then, to get the next number in the list, just add the previous two, Finally, a
number is perfect if the sum of all its divisors. other than itself. adds back up to the
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original number. Thus, the numbers dividing 6 are 1, 2, and 3, and 1 + 2 3 = 6.
Similarly, the divisors of 28 are 1, 2, 4, 7, and 14, and

14+24+4+7+ 14 =28

We will encounter all these types of numbers, and many others, in our excursion
through the Theory of Numbers,

Some Typical Number Theoretic Questions

The main goal of number theory is to discover interesting and unexpected rela-
tionships between different sorts of numbers and to prove that these relationships
are tree, In this section we will describe a few typical number theoretic problems,
some of which we will eveniually solve, some of which have known solutions too
difficult for us to include, and some of which remain unsolved to this day.

Suns of Squares I. Can the sum of two squares be a square? The answer is
clearly “YES”; for example 3% + 42 = 52 and 52 -+ 122 = 132, These ate
examples of Pythagorean triples. We will describe all Pythagorean triples in
Chapter 2.

Sums of Higher Powers. Can the sum of two cubes be a cube? Can the sum
of two fourth powers be a fourth power? In general, can the sum of two
n powers be an n™ power? The answer is “NO.” This famous problem,
called Fermat’s Last Theorem, was first posed by Pierre de Fermat in the
seventeenth century, but was not completely solved until 1994 by Andrew
Wiles, Wiles’s proof uses sophisticated mathematical techniques that we
will not be able to describe in detail, but in Chapter 28 we will prove that
no fourth power is a sum of two fourth powers, and in Chapter 48 we will
sketch some of the ideas that go into Wiles’s proof.

Infinitude of Primes., A prime number is a number p whose only factors are 1
and p.
e Are there infinitely many prime numbers?
e Are there infinitely many primes that are 1 modulo 4 numbers?
¢ Are there infinitely many primes that are 3 modulo 4 numbers?
The answer to all these questions is “YES.” We will prove these facts in

Chapters 12 and 24 and also discuss a much more general result proved by
Lejeune Dirichlet in 1837.
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Sums of Squares II. Which numbers are sums of two squares? It often turns out
that questions of this soit are easier to answer first for primes, so we ask
which (odd} prime numbers are a sum of two squares. For example,

3 = NO, =121 2% 7 = NO, 11 = NO,
=015  Tr=12142, 191N, 3 =N0;
20 =22 +5%  31=NO, 37 =12 4 62,

Do you see a pattern? Possibly not, since this is only a short list, but a longer
list leads to the conjecture that p is a sum of two squares if it is congruent
to | {(modulo 4). In other words, p is a sum of two squares if it leaves a
remainder of 1 when divided by 4, and it is not a sum of two squares if it
leaves a remainder of 3. We will prove that this is true in Chapter 26.

Number Shapes, The square numbers are the numbers 1, 4, 9, 16, .., that can
be arranged in the shape of a square. The triangular numbers are the num-
bers 1, 3, 6, 10, ... that can be arranged in the shape of a triangle. The first
few triangular and square numbers are illustrated in Figore 1.1,

[ ] ® ®
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1+2=3 1+2+3=6 14+24+34+4=10
Triangular Numbers

® 9 0 & & & @
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® ¢ ¢ O

22 — 4 3P=9 42 = 16

Square Numbers

Tigure 1.1: Numbers that form interesting shapes

A natural question fo ask is whether there are any triangular numbers that
are also square numbers (other than 1). The answer is “YES,” the smallest
example being

6=6"=1+2+34+4+54+6+7+8.

So we might ask whether there are more examples and, if so, are there in-
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finitely many? To search for examples, the following formula is helpful:

1
1+2+3+---+(nw1)+n:@.

There is an amusing anecdote associated with this formula. One day
when the young Karl Friedrich Gauss (1777-1855) was in grade school,
his teacher became so incensed with the class that he set them the task
of adding up all the numbers from 1 to 100. As Gauss’s classmates
dutifully began to add, Gauss walked up to the teacher and presented the
answer, 5050. The story goes that the teacher was neither impressed nor
amused, but there’s no record of what the next make-work assignment
was!

There is an easy geometric way to verify Gauss’s formula, which may be the
way he discovered it himself. The idea is to take two triangles consisting of
142+ -4 n pebbles and fit them together with one additional diagonal
of n + 1 pebbles. Figure 1.2 illustrates this idea for n = 6,

7

-1
6 2
5 3
4 4
3 5
) 6

1 —

(L+2+3+4454+6)+7+(6+5+4+34+24+1)=T7"

Figure 1.2: The sum of the first 7 integers

In the figare, we have marked the extra n + 1 = 7 pebbles on the diagonal
with black dots. The resulting square has sides consisting of . + 1 pebbles,
so in mathematical terms we obtain the formula

2042434 -+n)+ (n+1) = (n+ 1),

o e Ani 1.



10 [Chap. 1] What Is Number Theory?

Now we can subtract n + 1 from each side and divide by 2 to get Gauss’s
formula.

Twin Primes. In the list of primes it is sometimes true that consecutive odd num-
bers are both prime. We have boxed these hwin primes in the following list
of primes less than 100:

GIGENE [E [@m 2 [B)61
la1][43]), 47,53, [59}[61], 67, [71}[73] 79,83,89,97.
Are there infinitely many twin primes? That is, are there infinitely many

prime numbers p such that p + 2 is also a prime? At present, no one knows
the answer to this question.

FOXTROT (©Bill Amend. Reprinted with permission of UNIVERSAL
SYNDICATE. All rights reserved

Primes of the Form N? 4- 1. If we list the numbers of the form N? + 1 taking
N = 1,2,3,..., we find that some of them are prime. Of course, if N is
odd, then N2 4 1 is even, so it won’t be prime unless N = 1. So it’s really
only interesting to take even values of N. We’ve highlighted the primes in
the following list:

2 11=5 4241=17 6241=387 &+4+1=65=5-13
102 +1=101 12241=145=5.20 14241 =197
162 41=257 1824+1=325=5%-13  20°+1 =401

It looks like there are quite a few prime values, but if you take larger values
of N you will find that they become much rarer. So we ask whether there are
infinitely many primes of the form N2 + 1. Again, no one presently knows

tha ancwar fa thic anasctinn
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We have now seen some of the types of questions that are studied in the Theory
of Numbers. How does one attempt to answer these questions? The answer is that
Number Theory is partly experimental and partly theoretical. The experimental
part normally comes first; it ieads to questions and suggests ways to answer them.
The theoretical part follows; in this part one tries to devise an argument that gives
a conclusive answer to the questions. In summary, here are the steps to follow:

1. Accumulate data, usually numerical, but sometimes more abstract in nature.

2. Examine the data and try to find patterns and relationships.

3. Formulate conjectures (that is, guesses) that explain the patterns and rela-
tionships. These are frequently given by formulas.

4. Test your conjectures by collecting additional data and checking whether the
new information fits your conjectures.

5. Devise an argument (that is, a proof) that your conjectures are correct.

All five steps are important in number theory and in mathematics, More gener-
ally, the scientific method always involves at least the first four steps. Be wary of
any purported “scientist” who claims to have “proved” something using only the
first three. Given any collection of data, it’s generally not too difficult to devise
numerous explanations. The true test of a scientific theory is its ability to predict
the ouicome of experiments that have not yet taken place. In other words, a scien-
tific theory only becomes plausible when it has been tested against new data. This
is true of all real science. In mathematics one requires the further step of a proof,
that is, a logical sequence of assertions, starting from known facts and ending at
the desired statement.

Exercises

1.1. The first two numbers that are both squares and friangles are 1 and 36. Find the
next one and, if possible, the one after that. Can you figure out an efficient way to find
triangular—square numnbers? Do you think that there are infinitely many?

1.2. 'Try adding up the first few odd numbers and see if the numbers you get satisfy some
sort of pattern. Once you find the pattern, express it as a formula. Give a geometric
verification that your formula is correct.

1.3. The consecutive odd numbers 3, 5, and 7 are all primes. Are there infinitely many
such “prime triplets”? That is, are there infinitely many prime numbers p so that p + 2 and
p+ 4 are also primes?

1.4, It is generally believed that infinitely many primes have the form N? + 1, although
no one knows for sure.
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(a} Do you think that there are infinitely many primes of the form NZ 12

(b) Do you think that there are infinitely many primes of the form NZ - 27

(c) How about of the form N2 — 37 How about N? — 47

{(d) Which values of a do you think give infinitely many primes of the form N 27

1.5. The following two lines indicate another way to derive the formula for the sum of the
first n integers by rearranging the terms in the sum. Fill in the details.

14243+ +n=14+n)+2+O-1))+B+n—-2)+--
=14 n) + {14 n) +{1+nr) 4= .

In particular, how many copies of n + 1 are in there in the second line? (You may need to
consider the cases of odd n and even n separately. If that’s not clear, try first writing it out
explicitly forn =6 andn = 7.)



Chapter 2

Pythagorean Triples

The Pythagorean Theorem, that “beloved” formula of all high school geometry
students, says that the sum of the squares of the sides of a right triangle equals the
square of the hypotenuse. In symbols,

a +b? = ¢? b

—

Figure 2.1: A Pythagorean Triangle

Since we’re interested in number theory, that is, the theory of the natural num-
bers, we will ask whether there are any Pythagorean triangles all of whose sides are
natural numbers. There are many such triangles. The most famous has sides 3, 4,
and 5. Here are the first few examples:

3P +42=5% 524122132 &2415% =172, 9282 4 45% =532,

The study of these Pythagorean triples began long before the time of Pythago-
ras. There are Babylonian tablets that contain lists of such triples, including quite
large ones, indicating that the Babylonians probably had a systematic method for
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producing them. Pythagorean triples were also used in ancient Egypt. For exam-
ple, a rough-and-ready way to produce a right angle is to take a piece of string,
mark it into 12 equal segments, tie it into a loop, and hold it taut in the form of a
3-4-5 triangle, as illustrated in Figure 2.2. This provides an inexpensive right angle
tool for use on small construction projects (such as marking property boundaries
or building pyramids). Even more amazing is the fact that the Babylonians created
tables of quite large Pythagorean triples, which they may have used as primitive
trigonometric tables.

String with 12 knots String pulled taut

Figure 2.2: Using a knotted string to create a right triangle

The Babylonians and Egyptians had practical reasons for studying Pythagor-
ean (riples. Do such practical reasons still exist? For this particular problem, the
answer is “probably not”” However, there is at least one good reason to stady
Pythagorean triples, and it’s the same reason why it is worthwhile studying the art
of Rembrandt and the music of Beethoven. There is a beauty to the ways in which
numbers interact with one another, just as there is a beauty in the composition of a
painting or a symphony. To appreciate this beauty, one has to be willing to expend
a certain amount of mental energy. But the end resuit is well worth the effort. Our
goal in this book is to understand and appreciate some truly beautiful mathematics,
to learn how this mathematics was discovered and proved, and maybe even to make
some original contributions of our own.

Enough blathering, you are undoubtedly thinking. Let’s get to the real stuff,
Our first naive question is whether there are infinitely many Pythagorean triples,
that is triples of natural numbers (a, b, c) satisfying the equation ¢ + b? = ¢?. The
answer is “YES” for a very silly reason. If we take a Pythagorean triple (e, b, c)
and multiply it by some other number d, then we obtain a new Pythagorean triple
(da,db,dc). This is true because

(da)? + (db)? = B2(a® + V7)) = d*c* = (dc)”.

Clearly (hese new Pythagorean triples are not very interesting. So we will concen-

tonta mne attantinn Aan frinlec wwith na commaon factove We will even oive them a
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name:
A primitive Pythagorean triple (or PPT for short) is a triple of num-
bers (e, b, ¢} so that a, b, and ¢ have no common factors! and satisfy

a® +b% = ¢,

Recall our checklist from Chapter 1. The first step is to accumulate some data.
I used a computer to substitute in values for & and b and checked if @® + 52 is a
square. Here are some primitive Pythagorean triples that I found:

(3,4,5), (5,12,18), (8,15,17), (7,24,25),
(20,21,29), (9,40,41), (12,35,37), (11,60,61),
(28,45,53), (33,56,65), (16,63,65).

A few conclusions can easily be drawn even from such a short list. For example, it
certainly looks like one of @ and b is odd and the other even. It also seems that ¢ is
always odd.

[t’s not hard to prove that these conjectures are correct. First, if @ and b are both
even, then ¢ would also be even. This means that a, b, and ¢ would have a common
factor of 2, so the triple would not be primitive. Next, suppose that @ and b are
both odd, which means that ¢ would have to be even. This means that there are
numbers x, ¥, and # so that

a2 T, b=2y+1, and o= 2z,
We can substitute these into the equation @? + b2 = ¢? to get

(2 +1)° + (25 +1)° = (22)%,
4z? + 4o 4 4y? + dy + 2 = 422,
Now divide by 2,
2% 4 22+ 2P + 2y + 1 = 222

This last equation says that an odd number is cqual to an even number, which is
impossible, so @ and b cannot both be odd. Since we’ve just checked that they
cannot both be even and cannot both be odd, it must be (rue that one is even and

'A common factor of a, b, and ¢ is a number d so that each of a, b and ¢ is a multiple of d . For
example, 3 is a common factor of 30, 42, and 105, since 30 = 3. 10,42 = 3- 14, and 105 = 3 - 35,
and indeed it is their largest coramon factor. On the other hand, the numbers 10, 12, and £5 have
no common factor (other than 1). Since our goal in this chapter is to explore some interesting and
beautiful sumber theory without getting bogged down in formalities, we will use common factors
and divisibility informally and trust our intuition, In Chapter 5 we will retun to these questions and
develon the theorv of divisibititv more carefillv
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the other is odd. It’s then obvious from the equation a® + b? = ¢? that ¢ is also
odd.

We can always switch ¢ and b, so our problem now is to find all solutions in
natural numbers fo the equation

a odd,
a2+ =7 with b even,
@, b, ¢ having no common factors,

The tools we will use are factorization and divisibility.
Our first observation is that if (a,b, ¢} is a primitive Pythagorean friple, then
we can factor
a? =t =02 =(c—b)(c+b).

Here are a few examples from the list given carlier, where note that we always
take a to be odd and b to be even:

P =5 2= (5-4)5+4)=1-9,
152 =172 - 82 = (17— 8)(17+8) =9 - 25,
352 =372 — 122 = (37 — 12)(37 + 12) = 25 - 49,
332 = 652 — 562 = (65 — 56)(65 + 56) = 9. 121.

It looks like ¢ — b and ¢ - b are themselves always squares. We check this obser-
vation with a couple more examples:

212 = 292 - 20% = (29 — 20)(29 + 20} = 9 - 49,
632 = 657 — 16% = (65 — 16)(65 -+ 16) — 49 - 81.

How can we prove that ¢ — b and ¢ + b are squares? Another observation ap-
parent from our list of examples is that ¢ — b and ¢ + b seem to have no common
factors. We can prove this last assertion as follows. Suppose that d is a common
factor of ¢ — band ¢ -}- b; that is, d divides both ¢ — b and ¢ + b. Then d also divides

(e+b)+(c—b)=2¢ and (c+b)—(e—b)=2b.

Thus, d divides 2b and 2¢. But b and ¢ have no common factor because we are
assuming that (a, b, ¢) is a primitive Pythagorean triple. So d must equal 1 or 2.
But d also divides {¢ — b){c+ b) = a?, and a is odd, so d must be 1. Tn other
words, the only number dividing both¢ —bandc+ bis 1,s0¢— b and ¢+ b have
no common factor,
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We now know that ¢ - b and ¢ - b have no common factor, and that their prod-
uct is a square since (¢ — b)(c + b) = a®. The only way that this can happen is if
¢ — band ¢+ b are themselves squares.? So we can write

c+b=s and e—~b=12
where s > ¢ > 1 are odd integers with no common factors. Solving these two
equations for b and ¢ yields
_ 5% ¥ g2 w R

= 5 and b= 7

a = /{c— bY{c+ b) = st.

We have finished our first proof! The following theorem records our accomplish-
ment,

and then

Theorem 2.1 (Pythagorean Triples Theorem). You will get every primifive Py-
thagorean triple (a, b, c) with a odd and b even by using the formulas
2 _ 42 2y 42
5°—1 8“1
a = st, b= 5 c= o

where s > 1 > 1 are chosen io be any odd integers with no common factors.

For example, if we take ¢ = 1, then we get a triple (s, 32; £, %—1) whose b

and c entries differ by 1, This explains many of the examples we listed above. The
following table gives all possible triples with s < 9.

4242 s2 4+ 42
g ¢ a=st b= 5 gi= 5
3 1 3 4 5
5 1 5 12 13
7 1 7 24 25
9 1 9 40 41
b 3 15 8 17
7 3 21 20 29
7 5 35 12 37
9 5 45 28 53
9 7 63 16 65

This is intuitively clear if you consider the factorization of ¢ — b and ¢ + b into primes, since
the primes in the factorization of ¢ — b will be distinct from the primes in the factorization of ¢ - b,
Hawever, the existence and uniqueness of the factorization inte primes is by no means as obvious as
it appears. We will discuss this further in Chapter 7.
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A Notational Interlude

Mathematicians have created certain standard notations as a shorthand for various
quantities. We will keep our use of such notation to a minimum, but there are a
few symbols that are so commonly used and are so useful that it is worthwhile to
introduce them here. They are

N = the set of natural numbers = 1,2,3,4,...,
7 — the set of integers = ... — 3,-2,-1,0,1,2,3,...,

() = the set of rational numbers (i.c., fractions).

In addition, mathematicians often use R to denote the real numbers and C for the
complex nombers, but we will not need these. Why were these letters chosen?
The choice of N, I8, and C needs no explanation. The letter 7, for the set of inte-
gers comes from the German word “Zahlen,” which means numbers. Similarly, Q
comes from the German “Quotient” (which is the same as the English word). We
will also use the standard mathematical symbol & to mean “is an element of the
sel” So, for example, & € N means that ¢ is a natural number, and x € () means
that z is a rational number.

Exercises

2.1. (a) We showed that in any primitive Pythagorean tiple (a, b, c), either a or b is even.
Use the same sort of argument to show that either « or b must be a multiple of 3.
(b) By examining the above list of primilive Pythagorean triples, make a guess about
when a, b, or ¢ is a multiple of 5. Try to show that your guess is correct.

2.2. A nonzero integer d is said to divide an integer m if m = dk for some number k.
Show that if d divides both m and 7, then d also divides m — n and m + n.

2.3, For each of the following questions, begin by compiling some data; next examine the
data and formulate a conjecture; and finally try to prove that your conjecture is correct. (But -
don’t worry if you can’t solve every part of this problem; some parts are quite difficuit.)

(a} Which odd numbers a can appear in a primitive Pythagorean triple (a, b, ¢)?

(b) Which even numbers b can appear in a primitive Pythagorean triple (a,b,¢)?

(¢) Which numbers ¢ can appear in a primitive Pythagorean triple (a, b, €)?

2.4. Tn our list of examples are the two primitive Pythagorean triples
33% 4+ 567 = 657 and 16 +63% = 65

Find at least one more example of two primitive Pythagorean triples with the same value
of e. Can you find three primitive Pythagorean (riples with the same ¢? Can you find more

than thraas9
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2,5, In Chapter 1 we saw that the p'®t triangutar number T3, is given by the formula

_ n{n+1)

Th=14+2434+.-.4+n 3

‘The first few triangular numbers are 1, 3, 6, and 10. In the list of the first few Pythagorean
triples (a, b, ¢}, we find (3,4, 5), (5,12, 13), (7, 24, 25), and {9, 40, 41}. Notice that in each
case, the value of b is four times a triangular number.
(a) Find a primitive Pythagorean triples (a, b, ¢) with & =#T%. Do the same for b =T
and with b :lﬂ‘;f.
(b} Do you think that for every triangular number T, there is a primitive Pythagorean
triple (e, b, ¢) with b = 4T, ? If you believe that this is true, then prove it. Otherwise,
find some trianguiar number for which it is not true.

2.6. If you look at the table of primitive Pythagorean triples in this chapter, you will see
many triples in which ¢ is 2 greater than a. For example, the triples (3, 4, 5), (15,8, 17),
(85,12,37), and (63, 16, 65) all have this property.
(&) Find two more primitive Pythagorean triples (a, b, ¢} having ¢ = a - 2.
(b) Find a primitive Pythagorean triple {a, b, ¢) having ¢ = a -+ 2 and ¢ > 1000,
(¢) Try to find a formula that describes all primitive Pythagorean triples (a, b, ¢) having
c=a+ 2,

2.7. For each primitive Pythagorean triple (@, b, ¢) in the table in this chapter, compute the
quantity 2¢ — 2a. Do these values seem to have some special form? Try to prove that your
observation is true for all primitive Pythagorean triples.

2.8. (a) Readabout the Babylonian number system and write a short description, including
the symbols for the numbers 1 to 10 and the multiples of 10 from 20 to 50.
(b) Read about the Babylonian tablet called Plimpton 322 and write a brief description,
including its approximate date of origin and some of the large Pythagorean triples
that it contains,



Chapter 3

Pythagorean Triples
and the Unit Circle

In the previous chapter we described all solutions to
a?+ b =¢*

in whole numbers a, b, c. If we divide this equation by ¢2, we obtain

&+ -

So the pair of rational numbers (a/¢, b/c) is a solution to the equation
& + 3;2 =1

Everyone knows what the equation 22 + 7% = 1 looks like: It is a circle C' of
radius 1 with center at (0, 0). We are going to use the geometry of the circle Cto
find all the points on ' whose zy-coordinates are rational numbers. Notice that
the circle has four obvious points with rational coordinates, (+1,0) and (0, %1).
Suppose that we take any (rational) number m and look at the line I, going through
the point (—1,0) and having slope m. (See Figure 3.1.) The line 1. is given by the
equation

Lig=mlz+1) (point-stope formula).

It is clear from the picture that the intersection CN L consists of exactly two points,
and one of those points is (—1,0). We want to find the other one.
To find the intersection of C' and L, we need to solve the equations

w2 a2 1 and n = mim + 1}
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L =line with
slope m

-1,6)

Figure 3.1: The Intersection of a Circle and a Line

for z and y. Substituting the second equation into the first and simplifying, we
need to solve
a® + (m(z + 1))2 =1
g2 tmia? 122+ 1) =1
(m® + Da® + 2mix + (m? ~ 1) = 0.
This is just a quadratic equation, so we could use the quadratic formula to solve
for . But there is a much easier way to find the solution. We know that & = —1
must be & solution, since the point (—1, 0) is on both C' and L. This means that we
can divide the quadratic polynomial by 2 + 1 to find the other root:
(m?2 + )z 4 (m? — 1)
z-+1)(m?+ 1)z? 4 2m2z 4 (m? — 1) .

So the other root is the solution of (m? + 1)z + (m? — 1) = 0, which means

that

_ 1—m?

T+ m?
Then we substitute this value of z into the equation y = m(x + 1) of the line L to
find the y-coordinate,

= mi Ty Iﬁ‘m?—i-l _ 2m
H= a 14 m? C14+m?

Thus, for every rational number m we get a solution in rational numbers

1—m? 2m

. 2R
e MQ) to the equation z° +y° =1,
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On the other hand, if we have a solution {1, 1) in rational numbers, then the
slope of the line through (z1,7:1) and (—1,0) will be a rational number. So by
taking all possible values for m, the process we have described will yield every so-
Jution to 22 + ¢ = 1 in rational numbers [except for (—1, 0}, which corresponds
to a vertical line having slope “m = 0o”]. We summarize our results in the follow-
ing theorem.

Theorem 3.1. Every point on the circle
w‘z 5 yQ e Il

whose coordinates are rational numbers can be obtained from the formula
ot i T-=m® R
w 1+m2’ 1+m?

by substituting in rational numbers for m. [Except for the point (—1,0), which is
the limiting value as m-— ©0.]

How is this formula for rational points on a circle related to our formula for
Pythagorean triples? If we write the rational number m as a fraction v/u, then our

formula becomes
tnafy= W —v:  2uw
YW=\ 2o w2 2 )

and clearing denominators gives the Pythagorean triple
(a,b,¢) = (u? —v?, 2u,u® + v?).

This is another way of describing all Pythagorean triples, although to describe only
the primitive ones would require some restrictions on © and v. You can relate this
description to the formula in Chapter 2 by setting

_s—l—t and ‘U_.s—t
= A o2

U

Exercises

3.1. As we have just seen, we get every Pythagorean iriple {a,b,c) with & even from the
formula
(a: b, C) = ('?.l!-2 — U2,2H‘U, u? + UQ)

by substituting in different integers for u and ». For example, {(u,v) = {2,1) gives the
smallest triple (3,4, 5).
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(a) If u and v have a common factor, explain why (a, b, ¢) will not be a primitive Pytha-
gorean triple,

(b) Find an example of integers 4 > v > 0 that do not have a common factor, yet the
Pythagorean triple (1* — v?, 2uv, u® + v?) is not primitive.

(¢) Make a table of the Pythagorean triples that arise when you substitute in all values
of vand v with 1 < v < u < 10, ‘

(d} Using your fable from (c), find some simple conditions on u and v that ensure that
the Pythagorean triple (v? - v?, 2uv, u? + v?) is primitive.

(e) Prove that your conditions in (d) really work.

3.2. (a) Use the lines through the point (1, 1) to describe all the peints on the circle
w4yt =2

whose coordinates are rational numbers.
(b) What goes wrong if you try to apply the same procedure to find afl the points on the
circle 22 + y? = 3 with rational coordinates?

3.3. Find a formula for all the points on the hyperbola
fl:2 _ y2 =

whose coordinates are rational numbers. [Hint. Take the line through the point (-1, 0)
having rational slope m and find a formula in terms of m for the second point where the
line intersects the hyperbola.]

34. The curve
¥ =2*+8

contains the points (1, —3) and (—7/4, 13/8). The line through these two points intersects
the curve in exactly one other point. Find this third point. Can you explain why the
coordinates of this third point are rational numbers?



Chapter 4

Sums of Higher Powers
and Fermat’s Last Theorem

Tn the previous two chapters we discovered that the equation
(L2 o b2 — C2

has lots of solutions in whole numbers a, b, c. It is natural to ask whether there are
solutions when the exponent 2 is replaced by a higher power. For example, do the
eguations

A+ =c and arit=¢t and A+ =7

have solutions in nonzero integers a, b, ¢? The answer is “NO.” Sometime around
1637, Pierre de Fermat showed that there is no solution for exponent 4. During
the eighteenth and nineteenth centuries, Karl Friedrich Gauss and Leonhard Buler
showed that there is no solution for exponent 3 and Lejeune Dirichlet and Adrien
Legendre dealt with the exponent 5. The general problem of showing that the
equation

(t.n I bn — cn

has no solutions in positive integers if n > 3 is known as “Fermat’s Last Theo-
rem.” It has attained almost cult status in the 350 years since Fermat scribbled the
following assertion in the margin of one of his books:

It is impossible to separate a cube into two cubes, or a fourth power into two
fourth powers, or in general any power higher than the second into powers of
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like degree. 1 have discovered a truly remarkable proof which this margin is
too small to contain.!

Few mathematicians today believe that Fermat had a valid proof of his “The-
orem,” which is called his Last Theorem because it was the last of his assertions
that remained unproved. The history of Fermat’s Last Theorem is fascinating, with
literally hundreds of mathematicians making important contributions. Even a brief
summary could easily fill a book. This is not our intent in this volume, so we will
be content with a few brief remarks.

One of the first general results on Fermat’s Last Theorem, as opposed to verifi-
cation for specific exponents n, was given by Sophie Germain in 1823, She proved
that if both p and 2p + 1 are primes then the equation a? + b = ¢? has no so-
lutions in integers a, b, ¢ with p not dividing the product abe. A later result of a
similar nature, due to A, Wieferich in 1909, is that the same conclusion is true if
the quantity 27 — 2 is not divisible by p?. Meanwhile, during the latter part of
the nineteenth century a number of mathematicians, including Richard Dedekind,
Leopold Kronecker, and especially Ernst Kummer, developed a new field of math-
ematics called algebraic number theory and used their theory to prove Fermat’s
Last Theorem for many exponents, although still only a finite list. Then, in 1985,
L.M. Adleman, D.R. Heath-Brown, and E. Fouvry used a refinement of Germain’s
criterion together with difficult analytic estimates to prove that there are infinitely
many primes p such that «? + b = ¢® has no solutions with p not dividing abe,

Sophie Germain (1776-1831) Sophic Germain was a French mathemati-
cian who did important work in number theory and differential equations,
She is best known for her work on Fermat’s Last Theorem, where she gave
a simple criterion that suffices to show that the equation a” + 6% = ¢® has
1o solutions with abe not divisible by p. She also did work on acoustics and
elasticity, especially the theory of vibrating plates. As a2 mathematics student,
she was forced to take correspondence courses from the Ecole Polytechnique
in Paris, since they did not accept women as students. For a similar reason,
she began her extensive correspondence with Gauss using the psendonym
Monsieur Le Blanc; but when she eventually revealed her identity, Gauss
was delighted and sufficiently impressed with her work to recommend her
for an honorary degree at the University of Géttingen,

In 1986 Gerhard Frey suggested a new line of attack on Fermat’s problem using
a notion called modularity. Frey’s idea was refined by Jean-Pierre Serre, and Ken

"Translated from the Latin: “Cubum antem in duos cubos, aut quadrato quadratum in duos
quadrate gquadratos, & generaliter nullam in infinitum ultra guadratum potestatent in duos ejusdem
nontinis fas est dividere; cujus rei demonstrationem mirabilem sane detexi. Hanc marginis exiguiias
nen caneret.”
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Ribet subsequently proved that if the Modularity Conjecture is true, then Fermat’s
Last Theorem s true. Precisely, Ribet proved that if every semistable elliptic curve?
is modular® then Fermat’s Last Theorem is true. The Modularity Conjecture, which
asserts that every rational elliptic curve is modular, was at that time a conjecture
originally formulated by Goro Shimura and Yutaka Taniyama. Finally, in 1994,
Andrew Wiles announced a proof that every semistable rational elliptic curve is
modular, thereby completing the proof of Fermat’s 350-year-old claim. Wiles’s
proof, which is a tour de force using the vast machinery of modern number theory
and algebraic geometry, is far too complicated for us to describe in detail, but we
will try to convey the flavor of his proof in Chapter 48.

Few mathematical or scientific discoveries arise in a vacuum. Even Sir Isaac
Newton, the transcendent genius not noted for his modesty, wrote that “If I have
seen further, it is by standing on the shoulders of giants.”” Here is a list of some
of the giants, all contemporary mathematicians, whose work either directly or in-
directly contributed to Wiles’s brilliant proof. The divessified nationalities high-
light the international character of modern mathematics. In alphabetical order:
Spencer Bloch (USA), Henri Carayol (France), John Coates (Australia), Pierre
Deligne (Belgium), Ehud de Shalit (Israel), Fred Diamond (USA), Gerd Falt-
ings (Germany), Matthias Elach (Germany), Gerhard Frey (Germany), Alexander
Grothendieck (Belgium), Yves Hellegouarch (France), Haruzo Hida (Japan), Ken-
kichi Iwasawa (Japan), Kazuya Kato (Japan), Nick Katz (USA), V.A. Kolyvagin
(Russia), Ernst Kunz (Germany), Robert Langlands (Canada), Hendrik Lenstra
(The Netherlands), Wen-Ch’ing Winnie Li (USA), Barry Mazur (USA), André
Néron (France), Ravi Ramakrishna (USA), Michel Raynaud (France), Ken Ri-
bet (USA), Karl Rubin (USA), Jean-Pierre Serre (France), Goro Shimura (Japan),
Yutaka Taniyama (Japan), John Tate (USA), Richard Taylor (England), Jacques
Tilouine (France), Jerry Tunnell (USA), André Weil (France), Andrew Wiles (Eng-
land).

Exercises
4,1, Write a one- (o two-page biography on one (or more) of the following mathematicians.

Be sure to describe their mathematical achievements, especially in number theory, and
some details of their lives. Also include a p'uagnph putting them into a historical context

ZAn eHiplic curve is a certain sort of curve, not an eflipse, given by an equation of the form
Yy = a, + au? + ba + ¢, where o, b, ¢ are integers. The elliptic curve is semistable if the quantities
3b - a® and 27¢ — 9ab + 24° hfwc no common factors other than 2 and satisfy a few other technical
conditions. We study elliptic curves in Chapters 4348

* An elliptic curve is called modutar if there is a map to it from another special sort of curve called
a modular curve.
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by describing the times (scientifically, politically, socially, etc.) during which they lived
and worked: (a} Niels Abel, (b) Claude Gaspar Bachet de Meziriac, (¢) Richard Dedekind,
(d) Diophantus of Alexandria, (¢} Lejeune Dirichlet, (f) Eratosthenes, (g) Buclid of Alexan-
dria, (h) Leonhard Euler, (i) Pierre de Fermat, (7} Leonardo Fibonacci, (k) Karl Friedrich
Gauss, (I) Sophie Germain, (m) David Hilbert, (n) Karl Jacobi, (o) Leopold Kronecker,
(p) Ernst Kummer, (q) Joseph-Louis Lagrange, (1) Adrien-Marie Legendre, (s) Joseph Li-
ouville, () Marin Mersenne, (u) Hermann Minkowski, (v) Sir Isaac Newton, (w) Pythago-
ras, (x) Srinivasa Ramanujan, (y) Bernhard Riemann, (z) P.L. Tchebychef (also spelled
Chebychev).

4.2. The equation a®+b* = ¢ has lots of solutions in positive integers, while the equation
a® + b* = ¢ has no solutions in positive integers. This exercise asks you to look for
solutions to the equation

a4 b* = ¢ (%)

inintegersc > b > a > 1.

(a) The equation (x) has the solution {e,,¢) = (2,2, 4). Find three more solutions in
positive integers. [Hint, Look for solutions of the form {(a, b, ¢) = (zz, yz, 2%). Not
every choice of x, y, z will work, of course, so you'll need to figure out which ones
do work. |

(b) If {4, B, ) is a solution to (%) and n is any integer, show that {n2A4, n2B, n3C) is
also a solution to ()}, We will say that a solution (q, b, ¢} to (%) is primifive if it does
not look like (n? A, n2 B, n3C) for any n > 2.

{c} Write down four different primitive solutions to (*). [That is, redo (a) using only
primitive solutions.)

(d) The solution (2, 2, 4) has a = b. Find all primitive solutions that have ¢ = b.

(e) Find a primitive solution to (x) that has « > 10000,



Chapter 5

Divisibility and the Greatest
Common Divisor

As we have already seen in our study of Pythagorean triples, the notions of divis-
ibility and factorizations are important tools in number theory. In this chapter we
will fook at these ideas more closely.

Suppose that 1 and . are integers with 1 # 0. We say that m divides n if n is
a multiple of m, that is, if there is an integer k so that n = mk. If m divides n, we
write m|n. Similarly, if m does not divide n, then we write 1 { n. For example,

3|6 and 12[132, since 6-=3-2 and 132=12-1L

The divisors of 6 are 1, 2, 3, and 6. On the other hand, 5 { 7, since no integer
multiple of 5 is equal to 7. A number that divides n is called a divisor of n.

If we are given two numbers, we can look for common divisors, that is, num-
bers that divide both of them. For example, 4 is a common divisor of 12 and 20,
since 4|12 and 4{20. Notice that 4 is the largest common divisor of 12 and 20.
Similarly, 3 is a common divisor of 18 and 30, but it is not the largest, since 6
is also a common divisor. The largest common divisor of two numbers is an ex-
tremely important quantity that will frequently appear during our number theoretic
excursions,

The greatest common divisor of two numbers ¢ and b (not both zero)
is the largest number that divides both of them. It is denoted ged(a, b).
If ged{a, b) = 1, we say that a and b are relatively prime.

Two examples that we mentioned above are

ped(12.20y =4 and ecd(18.30) = 6.
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Another example is
ged(225,120) = 15.

We can check that this answer is correct by factoring 225 = 32 . 52 and 120 =
23 .3 - 5, but, in general, factoring a and b is not an efficient way to compute their
greatest common divisor.!

The most efficient method known for finding the greatest common divisors of
two numbers is called the Euclidean algorithm. Tt consists of doing a sequence of
divisions with remainder until the remainder is zero. We will illustrate with two
examples before describing the general method.

As our first example, we will compute ged(36,132). The first step is to di-
vide 132 by 36, which gives a quotient of 3 and a remainder of 24, We write this
as

132 =3 x 36 + 24.

‘The next step is to take 36 and divide it by the remainder 24 from the previous step,
This gives
36=1x24+12.

Next we divide 24 by 12, and we find a remainder of 0,
24 =2 x12+0.

The Euclidean algorithm says that when you get a remainder of O then the re-
mainder from the previous step is the greatest conunon divisor of the original two
numbers. So in this case we find that ged(132, 36) = 12.

Let’s do a larger example. We will compute

ged(1160718174, 316258250).

Our reason for doing a large example like this is to help convince you that the
Euclidean algorithm gives a far more efficient way to compute ged’s than factor-
ization, We begin by dividing 1160718174 by 316258250, which gives 3 with a
remainder of 211943424, Next we take 316258250 and divide it by 211943424,
This process continues until we get a remainder of 0, The calculations are given in

'An even less efficient way to compute the greatest comunon divisor of @ and b is the method
taught to my daughter by her fourth grade teacher, whe recommended that the students make com-
plete lists of all the divisors of @ and b and then pick out the largest number that appears on both
fists!
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the following table:

1160718174 = 3 x 316258250 + 211943424
316258250 = 1 x 211943424 4 104314826
211943424 = 2 x 104314826 + 3313772
104314826 = 31 x 33137724+ 1587894

3313772 = 2 x 15878944 137984
1587894 = 11 x 137984 + 70070

137984 —  1x 70070+ 67914
70070 = 1 x 67914+ 2156

67914 = 31 x 2156+ « ged
2156 = 2 % 1078 + 0

Notice how at each step we divide a number A by a number 5 to get a quotient ¢
and a remainder R. In other words,

A=0QxB+R.

Then at the next step we replace our old A and B with the numbers B and I and
continue the process until we get a remainder of 0. At that point, the remainder
from the previous step is the greatest common divisor of our original two numbers.
So the above calculation shows that

ged(1160718174, 316258250) = 1078.

We can partly check our calculation (always a good idea) by verifying that 1078 is
indeed a common divisor. Thus

1160718174 == 1078 x 1076733 and 316258250 = 1078 x 293375.

There is one more practical matter to be mentioned before we undertake a
theoretical analysis of the Euclidean algorithm. If we are given A and B, how can
we find the quotient @ and the remainder R? Of course, you can always use long
division, but that can be time consuining and subject to arithmetic errors if A and B
are large. A pleasant alternative is to find a calculator or computer program that will
automatically compute () and R for you. However, even if you are only equipped
with an inexpensive calculator, there is an easy three-step method to find ¢ and I2.

Method to Compute Q and R on a Caleulator So That A = Bx Q@+ R
1. Use the calculator to divide A by B. You get a number with decimals,

2. Discard all the digits to the right of the decimal point. This gives ).
3. To find R, use the formula R = A — B x Q.
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For example, suppose that A = 12345 and B = 417. Then A/B = 29.6043. ..,
50 ( = 29 and R = 12345 — 417 - 29 = 252,

We're now ready to analyze the Buclidean algorithm. The general method
looks like

a= qxb + mn

b= GeXrr + 1o

r{T= (@3XxX719 + 13
4+ oy

o= G4 XT3

Tn—3=(Gn-1 X Th—2+ "1
Tn—2 = {n X Th_1 -+ — ged
'n—1= dn+1Tn + 0

If we let o = b and r_; = a, then every line looks like

Ti—1 = Qi41 X 7y + Tigp1.

Why is the last nonzero remainder v, a common divisor of a and b7 We start
from the bottom and work our way up. The last line 7,,—; = g, 1175, shows that r,,
divides r,_1. Then the previous line

Th—2=Gn X Th—1+ 7"y

shows that 1, divides 7,9, since it divides both ,,..; and r,,. Now looking at the
line above that, we already know that r,, divides both 7,,_; and r,,_s, so we find
that r, also divides r,,_3. Moving up line by line, when we reach the second line we
will already know that 1, divides 3 and 4. Then the second line b — go % 7y + 19
tells us that r, divides b. Finally, we move up to the top line and use the fact
that r,, divides both 1 and b to conclude that r,, also divides a. This completes our
verification that the last nonzero remainder 7,, is a common divisor of @ and b.

But why is r,, the greatest common divisor of @ and b? Suppose that d is any
common divisor of a and b. We will work our way back down the list of equations.
So from the first equation @ = ¢; X b+ r1 and the fact that d divides both @ and b,
we sce that d also divides r;. Then the second equation b = ggry + 1o shows us
that d must divide 7. Continuing down line by line, at each stage we will know
that ¢ divides the previous two remainders r;_; and r;, and then the current line
Ti—1 = (i1 X 13 + 1341 will tell us that d also divides the next remainder r;.
Eventually, we reach the penultimate line r,—9 = ¢,, X r,,_1 -+ rp, at which point
we conclude that d divides r,,. So we have shown that if d is any common divisor
of @ and b then d will divide r,,. Therefore, r,, must be the greatest common divisor
of ¢ and b,
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This completes our verification that the Euclidean algorithm actually com-
putes the greatest common divisor, a fact of sufficient importance to be officially
recorded.

Theorem 5.1 (Euclidean Algorithm). To compuite the greatest commion divisor of
two munbers @ and b, let 1 = a, let rg = b, and compute successive quotients
and remainders

il =44l X1+ i
fori=0,1,2,... until some remainder rn1y Is 0. The last nonzero remainder v,
is then the greatest common divisor of @ and b.

There remains the question of why the Euclidean algorithm always finishes. In
other words, we know that the last nonzero remainder will be the desired ged, but
how do we know that we ever get a remainder that does equal 0?7 This is not a
silly question, since it is easy to give algorithms that do not terminate; and there
are even very simple algorithms for which it is not known whether or not they
always terminate. Fortunately, it is easy to see that the Euclidean algorithin always
terminates. The reason is simple. Each time we compute a quotient with remainder,

A=Qx B+ R,

the remainder will be between 0 and B — 1. This is clear, since if R > B, then we
can add one more onto the quotient @ and subtract B from K. So the successive
remainders in the Buclidean algorithm continually decrease:

b=rg>ri>7m2>73> .

But all the remainders are greater than or equal to 0, so we have a strictly decreasing
sequence of nonnegative integers. Eventually, we must reach a remainder that
equals 0; in fact, it is clear that we will reach a remainder of 0 in at most b steps.
Fortunately, the Buclidean algorithm is far more efficient than this. You will show
in the exercises that the number of steps in the Euclidean algorithm is at most seven
times the number of digiis in b. So, on a computer, it is quite feasible to compute
ged{a, b) when @ and b have hundreds or even thousands of digits!

Exercises

5,1, Use the Enclidean algorithm to compute each of the following ged’s.
(a) ged(12345,67890) {b} ged(b4321, 9870)

5.2. L3 Write 2 program to compute the greatest common divisor ged(a, b) of two inte-
gers a and b, Your program should work even if one of @ or b is zero. Make sure that you
don’t go into an infinite loop if a and & are both zero!
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5.3. Letb = rp, ry, 12, ...be the successive remainders in the Euclidean algorithm applied
to a and b. Show that every two steps reduces the remainder by at least one half. In other
words, verify that
1
Piyg < 57-,- foreveryi=10,1,2,....

Conclude that the Euclidean algorithm terminates in at most 2 log, (b) steps, where log,, is
the logarithm to the base 2. In particular, show that the munber of steps is at most seven
times the number of digits in b. [Hinr, What is the value of log,{10}7]

5.4. A number L is called a common multiple of m and n if both m and n divide L.
The smallest such I is called the least common multiple of m and n and is denoted by
LCM(im, n). For example, LCN(3,7) = 21 and LCM(12, 66) = 132,
(a) Find the following least common multiples.
(i) LCM(8,12) (i) LCM{20,30) (i) LOM(51,68) (iv) LCM(23,18).
(b) For each of the LCMs that you computed in (a}, compare the value of LCM(m, n)
to the values of iz, n, and ged (i, n). Try to find a relationship,
{c) Give an argument proving that the relationship you found is correct for all m and n.
(d) Use your result in (b) to compute LCM(301337, 307829).
(e} Suppose that ged(m, n) = 18 and LCM({mn, n) = 720. Find m and n. Is there more
than one possibility? If so, find all of them.

5.5. The “3n + 1 algorithm” works as follows. Start with any number n. If n is even,
divide it by 2. If » is odd, replace it with 3n + 1. Repeat. So, for example, if we start
with 5, we get the list of numbers

5,16,8,4,2,1,4,2,1,4,2,1,...,
and if we start with 7, we get
7,22,11,34,17,52,26,13,40,20, 10,5, 16,8,4,2, 1,4,2,1,....

Notice that if we ever get to 1 the list just continues to repeat with 4, 2, 1's. In general, one
of the following two possibilities will occur:?

(i) We may end up repeating some number a that appeared earlier in our list, in which
case the biock of numbers between the two a’s will repeat indefinitely. In this case
we say that the algorithm rerminates at the last nonrepeated value, and the number
of distinet entries in the list is catled the length of the algorithm. For example, the
algorithin terminates at 1 for both 5 and 7. The length of the algorithm for 5 is 6,
and the length of the algorithm for 7 is 17,

(i1} We may never repeat the same number, in which case we say that the algorithm does
not terntinate,

*There is, of course, a third possibility, We may get tired of computing and just stop working, in
which case one might say that the algorithm terminates due to exhaustion of the computer!
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(a) Find the length and terminating value of the 3n-}-1 algorithm for each of the following
starting values of

(Hn=21 (ii) n =13 {ili}n = 31

{b) Do some further experimentation and try to decide whether the 3n + 1 algorithm
always terminates and, if so, what value(s) it terminates at.

(¢) Let L{n) be the tength of the algorithm for starting value n (assuming that it termi-
nates, of course). For example, L{5) = 6 and L{7} = 17. Show that if n = 8k + 4
then L{n) = L{n + 1). (Hint. What does the algorithm do to the starting values
8k 4+ 4 and 8k + 57

(d) Show that if n = 128k 4+ 28 then L{n) = L(n+ 1) = L{n + 2.

{e) Find some other conditions, similar to those in (¢} and (d), for which consecutive
values of n have the same length. (It might be helpful to begin by using the next
exercise to accumulate some data.)

5.6, L Write a program to implement the 3n - 1 algorithm described in the previous
exercise. The user will input 7 and your program should return the length L(n) and the
terminating value T'(n} of the 3n + 1 algorithm. Use your program to create a table giving
the length and terminating value for all starting values 1 < n < 100,



Chapter 6

Linear Equations and the
Greatest Common Divisor

Given two whole numbers a and b, we are going to look at all the possible numbers
we can get by adding a muitiple of @ to a multiple of b. In other words, we will
consider all numbers obtained from the formula

ax + by

when we substitute all possible integers for  and y. Note that we are going to
allow both positive and negative values for x and y. For example, we could take
a = 42 and b = 30. Some of the values of ax + by for this a and b are given in the
following table:

[ lZ8=-0]f=-2]d=~1[z=0}la=1]e=2z=3]

y=—3 —216 —174 —132 7 90 —48 == 36
y=—2 —186 —144 —-102} —-60| -—i8 24 66

=—1 —156 —114 72} =30 12 54 96
y= 0 —126 ~84 —42 0 42 84 126
y= 1 —96 —54 —12 30 72 114 156
Y= 2 —66 —24 18 60 102 144 186
y= 3 —36 6 48 90 132 174 216

Table of Values of 42z + 30y

Our first observation is that every entry in the table is divisible by 6. This is not
surprising, since both 42 and 30 are divisible by 6, so every number of the form
42x + 30y = 6(7x + 5y) is a multiple of 6. More generally, it is clear that ev-
ery number of the form ax -+ by is divisible by ged{a, b), since both @ and b are
divisible by ged{a, bl.
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A second observation, which is somewhat more surprising, is that the greatest
common divisor of 42 and 30, that is 6, actually appears in our table. Thus from
the table we see that

42+ (~2) +30 - 3 = 6 = ged(42, 30).

Further examples suggest the following conclusion:

The smallest positive value of
ax + by
is equal to ged(a, b).

There are many ways to prove that this is true. We will take a constructive ap-
proach, via the Buclidean algorithm, which has the advantage of giving a proce-
dure for finding the appropriate values of z and y. In other words, we are going to
describe a method of finding integers 2 and y that are solutions to the eqguation

ax + by = ged(a, b).

Since, as we have already observed, every number axz+by is divisible by ged(a, b),
it will follow that the smallest positive value of ez 4 by is precisely ged(a, b).

How might we solve the equation az + by = ged{a, b)? T @ and b are small,
we might be able to guess a solution. For example, the equation

10z 4+ 35y = 5
has the solution x = —3 and y = 1, and the equation

Tr+lily=1
has the solution z = —3 and ¥ = 2. We also notice that there can be more than
one solution, since z = & and y = —b is also a solution to 7z -+ 11y = 1.

However, if ¢ and b are large, guesswork or trial and error are not going to be
helpful. We are going to start by illustrating the Euclidean algorithm method for
solving ax + by — ged(a, b) with a particular example. So we are going to try to
solve

22z + 60y = ged(22, 60).

The first step is to perform the Euclidean algorithm to compute the ged. We find

60 —2x224+16
22=1x16+4+ 6
6= 2x6+ 4
6= 1x4+4+ 2

A — w2 N
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This shows that ged (22, 60) = 2, a fact that is clear without recourse to the Eu-
clidean algorithm. However, the Euclidean algorithm computation is important
because we’re going to use the intermediate quotients and remainders to solve the
equation 22z 4 60y = 2. The first step is to rewrite the first equation as

16 = a — 2b, where we let ¢ = 60 and b = 22,

We next substitute this value into the 16 appearing in the second equation. This
gives (remember that b = 22)

b=1x16+6=1x(a—2b)+6.
Rearranging this equation to isolate the remainder 6 yields
6=b—(a—2b)=—a+3b.
Now substitute the values 16 and 6 into the next equation, 16 = 2 x 6 + 4:
a—-20=16=2x6+4=2(-a+3b)+4
Again we isolate the remainder 4, yielding
4 = (a— 2b) — 2(—a + 3b) = 3a¢ — 8b.
Finally, we use the equation 6 = 1 x 4 4 2 to get
—a+3b=6=1x44+2=1x(3a—8b)+2.

Rearranging this equation gives the desired solution

—da+ 11h = 2,

{We should check our solution: —4 x 60+ 11 x 22 — —240 4242 — 2.)

We can summarize the above computation in the following efficient tabular
form. Note that the left-hand equations are the Euclidean algorithm, and the right-
hand equations compute the solution to az + by = ged{a, b).

a= 2xb+16 16=a-2b

b=1x16+ 6 6=b—-1x16
=b—1x (a—2b)
=—a+3b

16= 2x6+ 4 4=16—-2x6

= {a—2b) — 2 x (—a+ 3b)
= Ja—8b

6= Ixd+ 2 2=6—-1x4

= (—a -+ 3b) — 1 x (3a — 8b)
=—da+11b

4= 2x2+4+ 0
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Why does this method work? As the following table makes clear, we start with
the first two lines of the Euclidean algorithm, which involve the quantities ¢ and b,
and work our way down.

a— gmb+r |m=a—qb

b=qgori1+7ry |12 =b—qar1

=b— qla—qb)

= —ga+ (1+qiqe)b

rL=g3T2+7r3 |T3=71— g3

= (a — a1b) — as(—qa+ (1 + qq2)b)
= (14 @@)e— (@ + g3 + q1q203)b

As we move from line to line, we will continually be forming equations that look
like
latest remainder = some multiple of a plus some multiple of b.

Eventually, we get down to the last nonzero remainder, which we know is equal to
ged(a, b), and this gives the desired solution to the equation ged(a, b) = ax + by.

A larger example with ¢ = 12453 and b = 2347 is given in tabular form on top
of the next page. As before, the left-hand side is the Buclidean algorithin and the
right-hand side solves az + by = ged(a,b). We see that ged(12453,2347) = 1
and that the equation 12453z +-2347y = 1 has the solution {z, y) = (304, —1613).

We now know that the equation

az + by = ged(e, b)

always has a solution in integers = and . The final topic we discuss in this section
is the question of how many solutions it has, and how to describe all the solutions,
Let’s start with the case that « and b are relatively prime, that is, ged(a, b} = 1, and
suppose that (&1, ) is a solution to the equation

ax + by = 1.

We can create additional solutions by subtracting a multiple of & from z; and
adding the same multiple of a onto y. In other words, for any integer & we obtain
a new solution (z1 + kb, y1 — ka).! We can check that this is indeed a solution by
computing

a{xzy + kb) + blyy — ka) = azy + akb+ byy — bka = az; +byy — 1.

'Geometrically, we are starling from the known point (1, y1)} on the line ax + by = 1 and using
the fact that the line has slope ~a /b to find new points (z1 + £, 31 — {a/b)¢). To get new points with
miteger coordinates, we need to fet £ be a multiple of b, Substituting £ = kb gives the new integer
solution (21 + kb, 1 — ka).
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a=5xb +7I8 7i8 = a—5b
b=3x 718+ 193 193=56-3x718
=b—3x (a—5b)
= —3a + 16b
718 =3 x 193 + 139 139 = 718 — 3 x 193
= {a—5b) — 3 x (—3a + 16b)
= 10a — 53b
193 =1 x 139 + 54 54 =193 — 139
= (—3a + 16b) — (10a — 53b)
= —13a -+ 69%
130 =2x 54 +31 31 =139 —2 x b4
= (10a — 53b) — 2 x (—13a - 69D)
= 36a — 191D
b4 —1x 31 + 23 23 = b4 — 31
= —13a + 69b — (36a — 191b)
= —49q + 260b
31=1x23 +8 8§=31-23
= 36a — 191b — (—49a + 260b)
= 85 — 4b1b
28=2x8 +7 7=23—-2x38
= (—49a + 260b) - 2 x (85a — 451b)
= —219a + 11625
8=1x7 +1 1=8-7
= 85a — 4516 — (—219a + 1162b)
= 304a — 16130
7=7Tx1 +0

So, for example, if we start with the solution {(—1,2) to b + 3y = 1, we obtain
new solutions {—1 -+ 3k, 2 — 5&). Note that the integer & is allowed to be positive,
negative, or zero. Putting in particular values of k gives the solutions

.. (=13,22), (=10,17), {(—7,12), (—4,7), (~1,2),
(23_3): (53_8): (81_13)1 (11:_18)"' :

Still looking at the case that ged{a, b) = 1, we can show that this procedure
gives all possible solutions. Suppose that we are given two solutions {1, 1) and
(w2, y2) to the equation ax + by = 1. In other words,

ari+hp =1 and axy + by = 1.

We are going to multiply the first equation by y2, multiply the second equation
by 1, and subtract. This will eliminate b and, after a little bit of algebra, we are
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left with
arilys —axly) = Y2 — -

Similarly, if we multiply the first equation by ze, multiply the second equation
by 21, and subtract, we find that

brayi — briye = 22 — x1.
Soif we let k& = 2931 — 2142, then we find that
o =21+ kb and 1o =11 — ka.

This means that the second solution {z2, %) is obtained from the first solution
(x1,y1) by adding a multiple of b onto x; and subtracting the same multiple of
from y;. So every solution to ax + by — 1 can be obtained from the initial solu-
tion (x1, 31 ) by substituting different values of & into {27 + kb, 31 — ke).

What happens if ged(a, b) > 17 To make the formulas look a little bit simpler,
we will let g = ged(a,b). We know from the Euclidean algorithm method that
there is at least one solution (1, 1) to the equation

azx -+ by = g.

But ¢ divides both @ and b, so (1, 1) is a solution to the simpler equation
a b
e efreafpi= 1,
g g

Now our earlier work applies, so we know that every other solution can be obtained
by substituting values for & in the formula

($1+k‘9, yl—kg)
g g

This completes our description of the solutions to the equation ax + by — g, as
summarized in the following theorem,

Theorem 6.1 (Linear Equation Theorem). Let a and b be nonzero integers, and
let g = ged{a, b). The equation

ax+by=g

always has a solution (x1,11) in integers, and this solution can be found by the
Euclidean algorithm method described earlier. Then every solution to the equation
can be obtained by substituting integers k into the formia

(a:l—i—k.-é, yl——k-g).
g g
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For example, we saw that the equation
602 + 22y = ged{60,22) = 2

has the solution & — —4, ¥ = 11. Then our Linear Equation Theorem says that
every solution is obtained from the formula

(—4+11k,11 — 30k) with k any integer.

In particular, if we want a solution with = positive, then we can take & = 1, which
gives the smallest such solution (z, i) = (7, —19).
In this chapter we have shown that the equation

az + by = ged{a, b)

always has a solution. This fact is extremely important for both theoretical and
practical reasons, and we will be using it repeatedly in our number theoretic in-
vestigations. For example, we will need to solve the equation ax + by = 1 when
we study cryptography in Chapter 18. And in the next chapter we will nse this
equation for our theoretical study of factorization of numbers into primes.

Exercises

6.1. {a) Find a solution in integers to the equation

123454 -+ 67890y = ged (12345, 67890).

(b) Find a solution in integers to the equation
54321z 4 9876y = ged (54321, 9876).

6.2, Describe all integer solutions to each of the following equations,
fa) 105z 4 121y =1
(b) 12345z + 67890y = ged (12345, 67890)
(c) 514321z + 9876y = ged (54321, 9876)

6.3. & The method for solving az + by = ged{a, b) described in this chapter involves
a considerable amount of manipulation and back substitution. This exercise describes an
alternative way to compute x and y that is especially easy to implement on a computer.

{a) Show that the algorithm described in Figure 6.1 computes the greatest common divi-
sor g of the positive integers e and b, together with a solution (z, y) in integers to the
equation az + by = ged{a, b).

{b) Implement the algorithm on a computer using the computer tanguage of vour choice.
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(c) Use your program to compuie g = ged(a, b} and integer solutions to ax + by = g for

the following pairs {a, b).
(i) {19789, 23548) (it) (31875, 8387) (iii) (22241739, 19848039)

(d) What happens to your program if b = 07 Fix the program so that it deals with this
case correctly.

{e) For later applications it is useful to have a solution with ¢ > 0. Modify your program
so that it always returns a solution with = > 0. [Hint. If (z,¥) is a solution, then so
is (:L + bv ¥ {L)]

() Setx—=1,9=a,v=_0andw = b.

(2) Ifw = 0thensety = {g — ax)/b and return the values (g, 2, ).
(3) Divide g by w with remainder, ¢ = gw + ¢, with 0 < ¢ < w.

4y Sets=uz — gv.

(5) Set(z,g) = (v, w).

(6) Set (v,w) = (s,1).

(7} Goto Step (2).

Figure 6.1: Efficient algorithm to solve ax + by = ged(a, b}

6.4. (a) Find integers z, y, and z that satisfy the equation

Gz + 15y + 20z = 1.

(b) Under what conditions on &, b, ¢ is it true that the equation
ar+bytcz=1

has a solution? Describe a general method of finding a solution when one exists.
(c) Use your method from (b} to find a solution in integers to the equation

15bx + 341y 4- 3852 = 1.

6.5. Suppose that ged{a, b} = 1. Prove that for every integer ¢, the equation az + by = ¢
has a solution in integers z and y (Hint. Find a solution to au -+ by = 1 and multiply by e.)
Find a solution to 37z + 47y = 103. Try to make x and y as small as possible.

6.6, Sometimes we are only interested in solutions to ez + by = ¢ using nonnegative val-
ues for z and y.
{a) Explain why the equation 3z + By = 4 has no solutions withz > 0and y > 0,
(b) Make a list of some of the numbers of the form 3z + 5y withz > Gand y > 0. Make
a conjecture as to which values are not possible. Then prove that your conjecture is
correct,
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(c) For each of the following values of {a,b), find the largest number that is not of the
form qz + by withx > Gand y > 0.

(i) (as b) = (3:7) (it) (a:b) = (5: 7) (i) (a, b) = (4: 11)'

(d) Let ged{a,b) = 1. Using your results from (c), find a conjectural formula in terms
of a and b for the largest number that is not of the form ax + by with = > 0 and
y 2 07 Check your conjecture for at least two more values of {a, b).

(e) Prove that your conjectural formula in (d) is correct.

(f) Try to generalize this problem to sums of three terms az -+ by + ez with & > 0,
y = U and z > 0. For cxample, what is the largest number that is not of the form
6z + 10y + 152 with nonnegative z, y, 27



Chapter 7

Factorization and the
Fundamental Theorem
of Arithmetic

A prime monber is a number p > 2 whose only (positive) divisors are 1 and p.
Numbers m > 2 that are not primes are called composite numbers. For example,

prime numbers 2,3,5,7,11,18,17,19,23, 29,31, . ..
composite numbers 4, 6,8,9,10,12, 14, 15,16,18,20, . ..

Prime numbers are characterized by the numbers by which they are divisible, that
is, they are defined by the property that they are only divisible by 1 and by them-
selves. So it is not immediately clear that primes numbers should have special
properties that involve the numbers that they divide. Thus the following fact con-
cerning prime numbers is both nonobvious and important.

Claim 7.1. Let p be a prine number, and suppose that p divides the product ab.
Then either p divides a or p divides b (or p divides both a and b).!

Verification. We are given that p divides the product ab. If p divides a, we are
done, so we may as well assume that p does not divide ¢. Now consider what
ged(p, a) can be. Tt divides p, so it is either 1 or p. It also divides a, so it isn’t p,
since we have assumed that p does not divide a. Thus, ged(p, @) must equal 1.
Now we use the Linear Equation Theorem (Chapter 6) with the numbers p
and @. The Linear Equation Theorem says that we can find integers 2 and y that

YYou may say that this claim is obvious if we just factor @ and b into a product of primes. How-
ever, the fact that a number can be factored into a product of primes in exactly one way is itself a
nonobvious fact. We will discuss this further later in this chapter.
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solve the egnation
pr - ay=1.

[Note that we are using the fact that ged(p, @) = 1.] Now multiply both sides of
the equation by b. This gives

pbx + aby = b.

Certainly pba is divisible by p, and also aby is divisible by p, since we know that p
divides ab. Tt follows that p divides the sum

pbx -+ aby,
so p divides b. This completes the verification of the claim.? =

The claim says that if a prime divides a product ab, it must divide one of the
factors, Notice that this is a special property of prime numbers; it is not true for
composite numbers. For example, 6 divides the product 15 - 14, but 6 divides nei-
ther 15 nor 14. Tt is not hard to extend the claim to products with more than two
factors.

Theorem 7.2 (Prime Divisibility Property). Let p be a prime number, and sup-
pose that p divides the product aiag -+ a,. Then p divides at least one of the
factors a1, aq, ..., q,.

Verification. If p divides a1, we’re done. If not, we apply the claim to the product

ay (azas cdyp)

to conclude that p must divide asag -- - a,. In other words, we are applying the
claim with @ = a4 and b = agag - - - a,. We know that plab, so if p | a, the claim
says that p must divide b,

So now we know that p divides agag - - a,. If p divides ag, we're done. If
not, we apply the claim to the product es(as - - - a,) to conclude that p must di-
vide a3 - - - a,. Continuing in this fashion, we must eventually find some q; that is
divisible by p. O

Later in this chapter we are going to use the Prime Divisibility Property to
prove that every positive integer can be factored as a product of prime numbers
in essentially one way. Unfortunately, this important fact is so familiar to most
readers that they will question why it requires a proof, So before giving the proof,

*When we are verifying a claim or proving a statement, we use a little box I3 (o indicate that we
have completed the verification.
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I want to try to convince you that unique factorization into primes is far from being
obvious. For this purpose, I invite you to leave the familiar behind and enter the?

Even Number World
(popularly known as the “IE-Zone™)

Tmagine yourself in a world where the only numbers that are known are the even
numbers. So, in this world, the only numbers that ¢xist are

E=1{..,8—6—4,-20,246810,...}.

Notice that in the E-Zonewe can add, subtract, and multiply numbers just as usual,
since the sum, difference, and product of even numbers is again an even number.
We can also talk about divisibility. We say that a number 1 E-divides a number n
if there is a number k with n = mk. But remember that we’re now in the E-Zone,
so the word “number” means an even number. For example, 6 E-divides 12, since
12 = 6 - 2; but 6 does not F-divide 18, since there is no (even) number % satisfying
18 = Gk.

We can also talk about primes. We say that an {even) number p is an E-prime if
it is not divisible by any (even) numbers. (In the lE-Zone, a number is not divisible
by itself!) For example, here are some [E-primes:

2, 6, 10, 14, 18, 22, 26, 30.

Recall the claim we proved above for ordinary numbers. We showed that if
a prime p divides a product ab then either p divides a or p divides b. Now move
to the B-Zone and consider the E-prime 6 and the numbers ¢ = 10 and b = 18.
The number 6 E-divides ab = 180, since 180 = 6 - 30; but 6 E-divides neither 10
nor 18. So our “obvious” claim is not true here in the E-Zone!

There are other “self-evident facts” that are unirue in the IE-Zone. For exam-
ple, consider the fact that every number can be factored as a product of primes in
exactly one way. (Of course, rearranging the order of the factors is not considered
a different factorization.) It’s not hard to show, even in the E-Zone, that every
{even) number can be written as a product of -primes. But consider the following
factorizations:

180=6-30=10-18.

Notice that all of the numbers 6, 30, 10, and 18 are E-primes. This means that 180
can be written as a product of E-primes in two fundamentally different ways! In
fact, there is even a third way to write it as a product of E-primes,

180 = 2. 90.

3%ince this book is not a multimedia product, yowll have to usc your imagination to supply the
annreanriate Twilioht Zone mngic.
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We are going to leave the [E-Zone now and return to the familiar world where
odd and even numbers live together in peace and harmony. But we hope that our
excursion into the E-Zone has convinced you that facts that seem obvious require
a healthy dose of skepticism. Especially, any “fact” that “must be true” because it
is very familiar or because it is frequently proclaimed to be true is a fact that needs
the most careful scrutiny.*

E-Zone Border Crossing — Welcome Back Home

Everyone “knows™ that a positive integer can be factored into a product of primes
in exactly one way. But our visit to the [E-Zone provides convincing evidence that
this obvious assertion requires a careful proof.

Theorem 7.3 (The Fundamental Thearem of Arithmetic). Every integer n > 2
can be factored into a prodiict of primes

n=pipz--py
in exactly one way.

Before we commence the proof of the Fundamental Theorem of Arithmetic, a
few comments are in order. First, if n itself is prime, then we just write n — n and
consider this to be a product consisting of a single number. Second, when we write
n = pipz - -pr, we do not mean that py, pa, ..., p, have to be different primes.
For example, we would write 300 = 2 - 2- 3 - 5. 5. Third, when we say that n can
be written as a product in exactly one way, we do not consider rearrangement of
the factors to be a new factorization, For example, 12 =2.2-3and 12 =2-3.2
and 12 = 3. 2 - 2, but all these are treated as the same factorization.

Verification. The Fundamental Theorem of Arithmetic really contains two asser-
tions.

Assertion 1. The number n can be factored into a preduct of primes in some way.

Assertion 2, There is only one such factorization (aside from rearranging the fac-
tors).

We begin with Assertion 1. We are going to give a proof by induction. Don’t
let this scare you, it just means that first we’ll verify the assertion for n = 2, and

*The principle that well-known and frequently asserted “facts” should be carefully scrutinized
also applies to endeavors far removed from mathematics. Politics and journalism come to mind, and
the reader will undoubtedly be able to add many others to the Tist,
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then for n = 3, and then for n = 4, and so on. We begin by observing that 2 = 2
and 3 = 3 and 4 = 22, so each of these numbers can be written as a product of
primes. This verifies Assertion 1 for n = 2,3, 4. Now suppose that we’ve verified
Assertion 1 for every n up to some number, call it V. This means we know that
every namber n < N can be factored into a product of primes. Now we’ll check
that the same is true of N + 1.

There are two possibilities. First, NV 4 1 may already be prime, in which case
it is its own factorization into primes. Second, N + 1 may be composite, which
means that it can be factored as N + 1 = nyng with 2 < nj,ne < N. But we
know Assertion ! is true for ny and ng, since they are both less than or equal o N.
This means that both n; and ng can be written as a product of primes, say

= mpa Py and g = q142 " * * Qs.
Multiplying these two products together gives
N +1=ning=ppe priidz- s,

so N +4 1 can be factored into a product of primes. This means that Assertion | is
true for NV + 1.

To recapitulate, we have shown that, if Assertion 1 is true for alt numbers less
than or equal to N, then it is also true for N + 1. But we have checked it 1s true
for 2, 3, and 4, so taking N = 4, we see that it is also true for 5. But then we can
take NV = 5 to conclude that it is true for 6. Taking N = 6, we see that it is true for
N = 7, and so on. Since we can continue this process indefinitely, it follows that
Assertion 1 is true for every integer.

Next we tackle Assertion 2. It is possible to give an induction proof for this
assertion, too, but we will proceed more directly. Suppose that we are able to
factor n as a product of primes in two ways, say

n=p1paP3a - Pr = 14243494 -+ s

We need to check that the factorizations are the same, possibly after rearranging
the order of the factors. We first observe that py|n, so pilgiga - - - ¢s. The Prime
Divisibility Property proved earlier in this chapter tells us that py must divide (at
least) one of the g;’s, so if we rearrange the ¢;’s, we can arrange matters so that
p1lgr. But ¢y is also a prime number, so its only divisors are 1 and g1. Therefore,
we must have p; = g;.

Now we cancel p; (which is the same as ¢;) from both sides of the equation.
This gives the equation

TInTI0 T4+« e = (Inftafls » «  (Fa.
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Briefly repeating the same argument, we note that py divides the left-hand side of
this equation, so pa divides the right-hand side, and hence by the Prime Divisibility
Property, ps divides one of the ¢;’s. After rearranging the factors, we get p2|q2,
and then the fact that g, is prime means that p; = ¢o. This allows us to cancel py
(which equals ¢2) to obtain the new equation

D3Pa - Pr = q3q4 - - gs.

We can continue in this fashion until either all the p;’s or all the g;’s are gone.
Butif all the p;’s are gone, then the left-hand side of the equation equals 1, so there
cannot be any ¢;’s left, either. Similarly, if the ¢;’s are all gone, then the p;’s must
all be gone. In other words, the number of p;’s must be the same as the number
of g;°s. To recapitulate, we have shown that if

. =pD1Pap3ps - Pr = 41424394 * * * s,

where all the p;’s and ¢;'s are primes, then 7 — s, and we can rearrange the ¢;’s so
that

pr=q and p2=¢gy and p3=g3 and ... and p, =g,

This completes the verification that there is only one way to write n as a product
of primes, £

The Fundamental Theorem of Arithmetic says that every integer n > 2 can be
written as a product of prime numbers. Suppose we are given a particular integer n.
As a practical matter, how can we write it as a product of primes? If n is fairty small
(for example, n = 180) we can factor it by inspection,

180=2.90=2.2.45=2.2.3-15=2-2-3+ 3 -5.

If n is larger (for example, n = 9105293) it may be more difficult to find a
factorization. One method is to try dividing » by primes 2,3,5,7, 11,. .. until we
find a divisor. For n = 9105293, we find after some work that the smallest prime
dividing n is 37, We factor out the 37,

9105293 — 37 - 246089,

and continue checking 37, 41,43, ... to find a prime that divides 246089. We find
that 43[246089, since 246089 = 43-5723. And so on until we factor 5723 = 59-97,
where we recognize that 59 and 97 are both primes. This gives the complete prime

faclorization
0105293 = 37 .43 .hR0.0Q7
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If n is not itself prime, then there must be a prime p < v/n that divides n.
To see why this is true, we observe that, if p is the smallest prime that divides n,
then n — pm with m > p, and hence n = pm =2 p?. Taking the square root of
both sides yields /72 > p. This gives the following foolproof method for writing

any number n as a product of primes:

To write nz as a product of primes, try dividing it by every number (or
just every prime number) 2,3, ... that is less than or equal to /n. If
you find no numbers that divide n, then n itself is pritne. Otherwise,
the first divisor that you find will be a prime p. Factor n = pm and
repeat the process with .

This procedure, although fairly inefficient, works fine on a computer for num-
bers that are moderately large, say up to 10 digits. But how about a number like
n = 1028 4 19 If n turns out to be prime, we won’t find out until we’ve checked
/1 = 105 possible divisors. This is completely infeasible. If we could check
1,000,000,000 (that’s one billion) possible divisors cach second, it would still take
approximately 3 - 10%® years! This leads to the following two closely related ques-
tions:

Question 1. How can we tell if a given number n is prime or composite?

Question 2. If n is composite, how can we factor it into primes?

Although it might seem that these questions are the same, it turns out that
Question 1 is much easier to answer than Question 2. We will later see how to
write down large numbers that we know are composite, even though we will be
unable to write down any of their factors. In a similar fashion, we will be able
to find very large prime numbers p and g so that, if we were to send someone
the value of the product 7 = pg, they would be unable to factor n to retrieve the
numbers p and g. This curious fact, that it is very easy to multiply two numbers but
very difficult to factor the product, lies at the heart of a remarkable application of
number theory to the creation of very secure codes. We will describe these codes
in Chapter 18.

Exercises

7.1, Suppose that ged{a, b) = 1, and suppose further that a divides the product be. Show
that @ must divide .

7.2, Suppose that ged{a, b) = 1, and suppose further that & divides c and that b divides c.

Ol dlens tlin cwvndirnt nh oot Adivida A
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7.3, Give a proof by induction of each of the following formulas. [Notice that (a) is the
formula that we proved in Chapter | using a geometric arguwment and that (c) is the first n
terms of the geometric series. ]

(n+1
(@) i+2+3+-+-n.:”(L2+_)
0 12422432 4... 2= PBT D)
6
1— gt

©) 1+a+a?+a®+. - 4a®= e (a+#1)

g el oy L,
1.2 2.3 3-4 (n—1n  n

7.4. This exercise asks you to continue the investigation of the E-Zone. Remember as you
work that for the purposes of this exercise, odd numbers do not exist!

(a) Describe all E-primes.

{b) Show that every even number can be factored as a product of E-primes. (Hint. Mimic
our proof of this fact for ordinary numbers.)

{c) We saw that 180 has three different factorizations as a product of E-primes. Find the
smallest number that has two different factorizations as a product of E-primes. s 180
the smallest number with three factorizations? Find the smallest number with four
factorizations. '

(d} The number 12 has only one factorization as a product of E-primes: 12 = 2. 6. (As
usual, we consider 2 - 6 and 6 - 2 to be the same factorization.) Describe all even
numbers that have only one factorization as a product of E-primes.

7.5. Welcome to VI-World, where the only numbers that exist are positive integers that
leave a remainder of 1 when divided by 4. In other words, the only M-numbers that exist
are

{309 08 10 0L ...},

(Another description is that these are the numbers of the form 4¢ + I for t — 0,1,2,...)
In the M-World, we cannot add numbers, but we can multiply them, since if a and b both
leave a remainder of 1 when divided by 4 then so does their product. (Do you see why this
is true?)

We say that m M-divides n if n = mk for some M-number k. And we say that n is
an Wl-prime if its only Mi-divisors are 1 and itself. (Of course, we don’t consider 1 itself to
be an M-prime.)

{(a) Find the first six M-primes.
(b) Find an M-number n that has two different factorizations as a product of M-primes.

7.6. 8 In this exercise you are asked fo write programs to factor a (positive) integer n
into a product of primes. (If n = 0, be sure to return an error message instead of going into
an infinite loop!) A convenient way to represent the factorization of 7 is as a 2 X # matrix.
Thus, if

by, R £
n=py'ps’ - py

1
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then store the factorization of n as the matrix

(m Py p)

ki kz s s kr ’

(If your computer doesn’t allow dynamic storage allocation, you’ll have to decide ahead of
time how many factors to allow.)

(2) Write a program to factor » by trying each possible factor d = 2,3,4,5,6, . . .. (This
is an extremely inefficient method but will serve as a warm-up exercise.)

(b) Modify your program by storing the values of the first 100 (or more) primes and
first removing these primes from n before Jooking for larger prime factors. You
can speed up your program when trying larger d’s as potential factors if you don’t
bother checking d’s that are even, or divisible by 3, or by 5. You can also increase
efficiency by using the fact that a number m is prime if it is not divisible by any
number between 2 and /m. Use your program to find the complete factorization of
all numbers between 1,000,000 and 1,000,030.

(c) Write a subroutine that prints the factorization of n in a nice format. Optimally,
the exponents should appear as exponents; but if this is not possible, then print the
factorization of (say) n — 75460 = 2% .5.73 - 11 as

272 x5 % 773 « 11,

(To make the output easier to read, don’t print exponents that equal 1.}



