
Uppföljning: Modul V 

Spelteori 



1. Upprepad Fångarnas dilemma

• Strategier: 
– Johan & Sebastian: TFT (starta D) 
– Karl & Jonas: All-D 
– Martin & Anton: All-D 
– Alexander, Jonas & Johan: starta med C, om 

sviken spela resten D, avsluta alltid med D 
– Carina: TFT (starta C)



Resultat

Vinnaren är Carina!



1. Upprepad Fångarnas dilemma

• 1981 hölls den första tävlingen i upprepad 
FD organiserad av Robert Axelrod 

• Många komplicerade strategier, men vann 
gjorde ‘Tit for tat’ som var enklast: 
– Omgång 1: spela C 
– Kopiera sedan motståndarens drag från den 

tidigare omgången 

• Egenskaper: 
– Snäll 
– Hämndlysten 
– Förlåtande



• En bättre strategi är att spela TFT runda 
1,…,n-1 och sista rundan spela D 

• Men den blir slagen av TFT 1,…,n-2 och 
sedan DD 

• Alltså framgången beror på kontexten



Evolutionär spelteori

• Om vi tänker oss strategier som 
genetiskt ärvda och reproduktion prop. 
mot vinster 

• Evolutionärt stabil strategi S:  
 
 
 

• All-D är den enda ESS:en i upprepad FD

    Π(S,S) > Π(T,S), eller
    Π(S,S) = Π(T,S) och Π(S,T) > Π(T,T) Nash jmv. ESS



2. Sten-sax-påse

Sten

Påse

Sax
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DETERMINISTIC EVOLUTIONARY GAME DYNAMICS 63

Figure 1. Replicator dynamics for Rock-Paper-Scissors games:
a > b versus a < b

Replicator dynamics.

(2.1) ẋi = xi (ai(x) − x·a(x)) , i = 1, . . . , n (REP)

In the zero-sum version a = b of the RSP game, all interior orbits are closed,
circling around the interior equilibrium E, with x1x2x3 as a constant of motion.

Theorem 2.1. In a negative definite game satisfying (1.2), the unique Nash
equilibrium p ∈ ∆ is globally asymptotically stable for (REP). In particular, an
interior ESS is globally asymptotically stable.
On the other hand, in a positive definite game satisfying (1.5) with an interior
equilibrium p, i.e., an anti-ESS, p is a global repellor. All orbits except p converge
to the boundary bd∆.

The proof uses V (x) =
∏

xpi
i as a Lyapunov function.

For this and further results on (REP) see Sigmund’s chapter [53], and [9, 26, 27,
48, 61].

Best response dynamics. In the best response dynamics1 [14, 35, 19] one
assumes that in a large population, a small fraction of the players revise their
strategy, choosing best replies2 BR(x) to the current population distribution x.

(2.2) ẋ ∈ BR(x) − x.

Since best replies are in general not unique, this is a differential inclusion rather
than a differential equation. For continuous payoff functions ai(x) the right hand
side is a non-empty convex, compact subset of ∆ which is upper semi-continuous
in x. Hence solutions exist, and they are Lipschitz functions x(t) satisfying (2.2)
for almost all t ≥ 0, see [1].

For games with linear payoff, solutions can be explicitely constructed as piece-
wise linear functions, see [9, 19, 27, 53].

For interior NE of linear games we have the following stability result [19].

1For bimatrix games, this dynamics is closely related to the ‘fictitious play’ by Brown [6],
see Sorin’s chapter [56].

2Recall the set of best replies BR(x) = Argmaxy∈∆ y ·a(x) = {y ∈ ∆ : y ·a(x) ≥ z ·a(x)∀z ∈
∆} ⊆ ∆.

a > b b > a



Bakterier som spelar RSP

ecological processes in our C–S–R community (see Box 1). When
dispersal and interaction were local, we observed that ‘clumps’ of
types formed (Fig. 1a). These patches chased one another over the
lattice—C patches encroached on S patches, S patches displaced R
patches and R patches invaded C patches (Fig. 1a, b). Within this
fluid mosaic of patches, the local gains made by any one type were
soon enjoyed by another type. The result of this balanced chase was
the maintenance of diversity (Fig. 1c). However, this balance was
lost when dispersal and interaction were no longer exclusively local
(that is, in the ‘well-mixed’ system—see Box 1). In the mixed
system, continual redistribution of C rapidly drove S extinct, and
then R outcompeted C (Fig. 1d). Durrett and Levin6 describe a
qualitatively similar effect of spatial scale in their model of
colicinogenic, sensitive, and ‘cheater’ strains (where a cheater was
defined as a strain producing less colicin at a lower competitive
cost).
When ecological processes were local in the simulation, coex-

istence occurred over a substantial range of model parameter values
(Fig. 1e), suggesting that the result was not very sensitive to the
specific choice of parameter values. In the case of the mixed system,
coexistence never occurred for the region of parameter space shown
in Fig. 1e. In agreement with Durrett and Levin6, our simulation
results suggested that three strains with the abovementioned non-
hierarchical relationship could coexist when dispersal and inter-
action are local, whereas one strain excludes the others when the
community is well mixed.
To test this conclusion, we used three strains of the bacterium E.

coli: a colicin-producing strain (C), a sensitive strain (S), and a

resistant strain (R), which satisfied a rock–paper–scissors competi-
tive relationship (see Methods). We placed the C–S–R community
in the following three environments: (1) ‘Flask’ (a well-mixed
environment in which dispersal and interaction are not exclusively
local); (2) ‘Static Plate’ (an environment in which dispersal and
interaction are primarily local); and (3) ‘Mixed Plate’ (an environ-
ment intermediate between these two extremes).

For the Flask environment, the bacteria were grown in shaken
flasks containing liquid media. We transferred an aliquot of the
community to fresh media every 24 h. In the Static Plate environ-
ment, the bacteria were grown on the surface of solid media in
Petri plates. Every 24 h, we pressed each plate onto a platform
covered with a sterile velveteen cloth and then placed a fresh plate
on the velvet. This method transferred a small sample of the
community and allowed the transferred sample to retain the spatial
pattern that developed on the previous plate. The Mixed Plate
environment was identical to the Static Plate environment, except
that at each transfer the fully-grown community plate was pressed
on the velvet several times, each time rotated at a different angle
(see Methods).

Figure 2a shows that C, S and R strains were maintained at high
densities in the Static Plate environment throughout the exper-
iment. Photographs of the plates show the spatial pattern that
developed over the experiment (Fig. 3a). The pink and yellow inter-
strain boundaries in Fig. 3b show clearly that R chased C, and C

Figure 2 Community dynamics in the experimental treatments: a, Static Plate; b, Flask;
and c, Mixed Plate. Dashed lines indicate that the abundance of the relevant strain has
decreased below its detection limit. Data points are the mean of three replicates, and bars

depict standard errors of the mean. Consecutive data points are separated by 24 h,

approximately 10 bacterial generations.

Figure 3 Time series photographs of a representative run of the Static Plate environment.
We initiated the plate environments by depositing small droplets from pure cultures in a

hexagonal lattice pattern, where the strain at each point was assigned at random. a, The
changing spatial configuration of the experimental community is shown in this first panel

of photographs. Patches inhabited by C cells were less dense and consequently easily

distinguished from S and R patches. The dense growing ‘spots’ that appear inside the C

clumps were determined to be resistant cells generated de novo from S cells. An empty

layer existed between C clumps and S clumps, where diffused colicin had prevented the

growth of S cells, but where C cells had not yet colonized. The border between C and R

lacked this empty layer. b, ‘Chasing’ between clumps is highlighted in this second panel.
The letters giving the initial spatial distribution of the strains are preserved for reference.

The borders between C and S are coloured in yellow and the borders between C and R in

pink.
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Rock paper scissors in E.coli

b1b2b3 < a1a2a3Probably

Toxin producing 
strain
Kills the wild type

Kerr et al., Nature (2002)

Wild type
Avoids cost of 
resistance to 
toxins

Resistant 
strain
Is resistant to 
toxin, but pays a 
cost for 
resistance

“Rock paper scissors” in cooperation

Loners do not join the 

public goods game

Hauert, De Monte, Hofbauer & Sigmund, Science (2002)

If everyone takes part, 

defection pays

Loners

All cooperatorsAll defectors

L

each get a payoff Pl ! ". The remaining group
of S players of the sample consist of nc cooper-
ators and S # nc defectors. If S ! 1, we assume
that this single player has to act like a loner. We
normalize the individual investment to 1. The
defectors’ payoff is then Pd ! rnc/S, and the
cooperator’s payoff is Pc ! Pd # 1 (owing to
the cost of cooperation). Hence, in every group,
defectors do better than cooperators. We assume
r $ 1 (if all cooperate, they are better off than if
all defect) and 0 % " % r # 1 (better to be a
loner than in a group of defectors; but better still
to be in a group of cooperators). We stress that
players’ strategies are decided before the sam-
ples are selected, and do not depend on the
composition of the group. No anticipation, pref-
erential assortment, or conditional response is
involved. Cooperation persists in this minimal-
istic scenario under a wide variety of assump-
tions concerning population structure or adapta-
tion mechanisms. The results are extremely ro-
bust and do not depend on any particular brand
of evolutionary game theory.

In a well-mixed population, analytic expres-
sions for the payoff values can be derived (23).
The strategies display a rock-scissors-paper cy-
cle. If most players cooperate, it pays to defect.
If defectors are prevalent, it is better to stay out
of the public goods game and resort to the
loners’ strategy. But if most players are loners,
groups of small size S can form. For such
groups, the public goods game is no longer a
social dilemma: Although defectors always do
better than cooperators, in any given group, the
payoff for cooperators, when averaged over all
groups, will be higher than that of defectors (and
loners), and so cooperation will increase. This is
an instance of the well-known Simpson’s para-
dox (24). Thus, group size S divides the game
into two parts. For small group size, cooperation
is dominant, and for large size, defection; but the
mere option to drop out of the game preserves
the balance between the two options, in a very
natural way.

The game dynamics describing the frequen-
cies of the strategies depends on how players
imitate others and learn (Fig. 1) (25, 26). If, for
instance, they occasionally update their strategy
by picking another player at random, and adopt-
ing that model’s strategy with a probability pro-
portional to the payoff difference (provided it is
positive), then this yields the usual replicator
dynamics (27). It can be fully analyzed despite
the highly nonlinear payoff terms (28). For r %
2, we observe brief recurrent bursts of coopera-
tion interrupting long periods of prevalence of
the loner’s strategy. For r $ 2, a mixed equilib-
rium appears, and all orbits are periodic. The
time average of the ratio of cooperators to de-
fectors corresponds to the equilibrium values,
and the time average of the payoff is the same
for all strategies, and hence equal to the loner’s
payoff ". Other imitation mechanisms may lead
to other oscillatory dynamics. In particular, if
players always adopt the strategy of their ran-

domly chosen “model” whenever that model
has a higher payoff, then individual-based sim-
ulations display stable oscillations for the fre-
quencies of the three strategies (29). This find-

ing is very robust and little affected by addition-
al effects like hyperbolic discounting, random
changes of strategies, or occasional errors lead-
ing to the adoption of strategies with lower

Fig. 1. Optional public
goods games in large,
well-mixed popula-
tions. The three equi-
libria ec, ed, and el
are saddle points, de-
noting homogeneous
populations of coop-
erators, defectors, and
loners. (A) and (B)
describe the replicator
dynamics ẋ ! xi(Pi
#P̄ ), where P̄ is the
average payoff in the
population. For r ! 2
(A), the interior of
the simplex S3 con-
sists of orbits issued
from and returning to
el. Only brief intermit-
tent bursts of cooper-
ation are observed. (B)
For r $ 2, an equilib-
rium point Q appears,
surrounded by closed
orbits. (C) With per-
fect information, i.e.,
best-reply dynamics,
Q becomes an attractor. The dashed lines divide S3 into three regions where cooperation, defection,
and loners dominate. (D) Individual-based simulations confirm the stability of the cycles in finite
populations, if the strategy of a randomly picked individual is imitated whenever it performs better.
Parameters: N ! 5; (A) r ! 1.8, " ! 0.5; (B) to (D) r ! 3, " ! 1; (D) population size, 5000; number
of interactions, 106.

Fig. 2. Representative
snapshots of the op-
tional public goods
games on a square lat-
tice with synchronous
updates. In (A) and (B),
the deterministic rule
applies where each site
is taken over by the
best strategy within its
3 by 3 neighborhood. In
(C) and (D), the sto-
chastic rule prescribes
that 80% of all sites
adopt more successful
neighboring strategies,
with a probability pro-
portional to the payoff
difference. Blue refers
to cooperators, red to
defectors, and yellow
to loners. Intermediate
colors indicate players
that have just changed
their strategy. For low
multiplication rates
[r! 2.2 in (A) and (C)],
persistent traveling
waves are observed re-
gardless of the details
of the update rules. In (B), for r! 3.8, cooperators thrive on their own and loners go extinct. But in (D),
for the same high value of r, cooperators would go extinct in the absence of loners, owing to the
randomness. In a typical configuration, clusters of cooperators are surrounded by defectors and the
latter again are surrounded by loners. Cooperators occasionally manage to break through the defectors
clutch and invade domains of loners. Parameters: 50 by 50 lattice, periodic boundaries," ! 1.
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“Rock paper scissors” in cooperation

Hauert, De Monte, Hofbauer & Sigmund, Science (2002); Semmann, Krambeck & Milinski, Nature (2003)

Wilcoxon signed rank test,Z ¼ 3.36, two-tailed). Cooperators had a
payoff that did not significantly differ from the expected one,
1.32 ^ e0.09 (P ¼ 0.43, n ¼ 20; Wilcoxon signed rank test,
Z ¼ 0.78, two-tailed). Defectors probably profited because they
were less frequent than expected at the equilibrium.
We found that volunteering (the option to choose between

joining the public goods group and taking the loner strategy)
indeed protected cooperation in the public goods game by inducing
small group sizes. On average, there was a rather stable frequency of
cooperators that was higher than what is usually found in public
goods games after several rounds5,17. As predicted by the model8,9,
the dynamics of the games showed oscillations of the rock–paper–
scissors succession of cooperators, defectors and loners, even
though our players were less averse to risk than expected: only
about a third chose the loner option.
Volunteering is a mechanism that potentially sustains

cooperation in various species. Like some large predatory animals,
ancestral humans also acted as groups when hunting large prey such
as mammoths, but went out solitarily for small prey such as
antelopes25. Thus, volunteering was possible and might have sup-
ported cooperation in addition to potential relatedness by reducing
the public (hunting) group size. Obviously, we are not free to decide
whether we stop sharing the global climate with others, but there are
many other human social dilemmas inwhich volunteering is possible.

Volunteering does not produce overwhelming cooperation, but it
might help to avoid the fate of mutual defection in many human
collective enterprises and thus might pave the way for other mech-
anisms of cooperation to take over. For example, direct26 or indirect
reciprocity27–30 may be catalysed when the population happens to be
in a cooperator period of the rock–paper–scissors dynamic and
anonymity is relaxed after repeated interactions. Loners, although
unsocial by definition, help cooperators to becomemost frequent and
thus to escape the social dilemma. A

Methods
Subjects
A total of 280 human subjects of the universities of Bonn, Hamburg and Kiel played a
public goods game with optional participation that lasted for 57 rounds. The students
were completely anonymous, sat between partitions, saw the introduction to the game
including one example round and the complete game on a large screen. They did not know
the total number of rounds. They interacted by means of a computer program with silent
‘yes’ and ‘no’ switches.

Basis of the public goods game
For each round the computer program randomly selected 6 of the 14 students. Each
student had played almost the same number of rounds at the end of the game. Because the
expected cycles are predicted to become smoother with increasing population size9, we
mimicked a larger population. The students were told that there was a pool of additional
players in the form of strategies recorded from earlier sessions and that the programwould
sometimes choose ‘players’ from this pool.

A light at each person’s desk signalled who was to decide. Each of the six players had to
decide first whether to play the loner strategy, thereby obtaining a fixed payoff (e1.25), or
to join the public goods group with a second decision to make. The minimum public
group size was twoplayers. If only one player decided to play in the public goods group, he/
she knew that he/she would automatically also become a loner. If the public goods group
size was either two or larger, the players that had chosen to play in the public goods group
had to decide whether they would contribute e1.25 or nothing to the public pool. At this
point, they did not know how many subjects had decided to play in the public goods
group. After all players of the public goods group made their final decision, the content of
the pool was multiplied by 3.6 and divided evenly among the players that had joined the
public goods group irrespective of their actual contribution. With an interest rate of 3.6,
the model system has a fixed point, which refers to substantial proportions of cooperators,
defectors and loners. The dynamic then predicts periodic cycles of all three strategies
around these proportions; this requires an interest rate larger than 2.

Only at this point were the decisions of all players displayed simultaneously on the
screen that all 14 subjects could see: that is, the numbers of loners and public good group
players, their payoffs and their eventual costs (for example, one player was a loner and
obtained e1.25 without cost, five had chosen to join the public goods group, of which three
were defectors who received a payoff of e1.80 from the pool without costs and two were
cooperators who also received e1.80 from the pool, but they had costs of e1.25 each). It
never happened that one subject had to play loner because he/she had no money left.

Rounds of the public goods game
In the first seven rounds, the display was manipulated such that the players were led to
believe that they were in a group that played a high percentage of only one strategy. In six
groups loners appeared to be most frequent; there were eight groups with cooperators and
six with defectors as the apparent most frequent strategy. The players could make
decisions, however, which were not displayed. Instead, six predetermined decisions with
corresponding payoffs and eventual costs were shown. Each of the three possible real
decisions of a player (that is, loner, cooperator and defector) was included at least once to
ensure that each player would find his actual decision on the screen and nobody would
doubt that the displayed decisions were real. The maximum number of defectors or
cooperators displayed on the screen was four per round; for example, four defectors, one
cooperator, one loner. In the case of loners prevailing in thefirst seven rounds, it was possible
to show up to 100% of loners in one round, because each player who decided to join the
public goods group would believe that he/she was the only one with this decision and thus
became a loner. To have some variation, we chose a percentage of loners that was slightly
lower in the seven rounds. On average, there were 79% of loners in the staged loner groups,
61% of cooperators in the staged cooperator groups, and 64% of defectors in the staged
defector groups. Starting with round eight, there was no manipulation of the display for 50
consecutive rounds. The students did not know the total number of rounds to be played.
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Figure 3 Average frequencies of the three strategies over a period of ten rounds after
synchronizing the 20 groups as follows. The starting round of the ten rounds was defined

for each group as the round when one of the strategies reached its maximum proportion

throughout the game (rounds 8–57) for the first time. All 20 starting rounds and each of

the following 9 rounds were averaged over all groups for loners (a), cooperators (b) and
defectors (c). The sequence follows the predicted most frequent strategies according to
rock–paper–scissors dynamics: that is, loners, cooperators, defectors, loners, and so on.
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Genotype-phenotype mapping

Nowak & Sigmund (Science 2004):  
“Evolutionary game theory is formulated in terms 
of phenotypes, thereby ignoring the complexity 
of the genotype-phenotype mapping.”

Now:                                                               
“The evolutionary game is the genotype-
phenotype mapping.” 



Stokastisk modell

• Vi kan tänka oss en situation där en 
uppsättning agenter (en population) 
interagerar mha ett spel och byter 
strategier dynamiskt

Strategi A

Strategi B
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Övergångar

• Vi tänker oss att en spelare byter 
strategi med en sannolikhet som beror 
på hur bra det går 

• Välj en slumpvis spelare och jämför 
med en annan slumpvis vald spelare
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Dynamik

• Dessa regler definierar en Markovkedja 
i antalet spelare med strategi A i 

• Övergångssannolikheterna ges av:  
 
 
 
 

• Absorberande tillstånd är i = 0 och N
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Sten, sax och påse
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Notera skillnaden mellan deterministisk och stokastisk modell
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Fig. 2. The time evolution of the distribution of waiting-times in the population, in
the case of constant µ(pa), for consolation price k = 0.1 (left) and k = 0.3 (right).
For clarity, we show the distribution of the base-10 logarithm of the waiting-time in
the population. The colour-bars show the value corresponding to each colour in the
figures. For k = 0.1, the dynamics seems to converge to a stable limit cycle, and for
k = 0.3 it seems to converge to a stationary distribution.

4 Deterministic strategies

The formalism presented in the previous sections applies to both pure and
mixed strategies. In the following, we assume pure strategies, so that each
player is prepared to wait a given time x, and the population is then
characterised by a distribution u(x) over the waiting-times. When a player A
with strategy x meets a player B with strategy y, the probability of winning
for player A is P (x, y) = θ(x− y), where θ(z) is one if z > 0, 1/2 if z = 0 and
zero otherwise. The duration of the game is given by τ(x, y) = min(x, y).

When there is an atom at infinity (i.e., a finite share of the population with
infinite waiting-time), the players that wait indefinitely always get a fitness
of zero, since the expected score per game is bounded from above by one,
and the expected time per game is infinite (c.f. (7)). Thus, this strategy is
dominated by all other strategies, and in the following we assume there is no
atom at infinity.

In Fig. 2, we show the time evolution of the distribution of waiting-times in
the population, in the case of constant µ(pa), for consolation price k = 0.1
and k = 0.3, from numerical integration of the replicator dynamics (c.f. (6)).
The initial distribution is taken to be proportional to the inverse
waiting-time over the interval shown in the figure, and zero elsewhere. For
k = 0.1, we find that the dynamics seems to converge to a limit cycle, and
for k = 0.3 it seems to converge to a stationary distribution.
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Fig. 1. An illustration of the processes in the social dynamics. Players with strategies
x and y meet and engage in contests. When a contest ends, the participants return
to the available state. The number of individuals of strategy x in the available state
is nx, and the number of ongoing contests between players with these strategies
is given by np

xy, for a given pair of strategies (x, y). The rates at which contests
start and end are given along the arrows, where τxy is the expected duration of a
(x, y)-game, and N is the whole population size. The dotted arrows connect to the
nodes for other pairs.

from different initial distributions. In Section 8, we show how models with an
explicit time cost can be mapped to our model. In Section 9 we relate or
model to the models of Hines and Cannings and Whittaker. We conclude
with summarising and discussing our results in Section 10.

2 Social dynamics model

Consider a population of N individuals. During the course of one generation,
an individual experiences a series of encounters with other individuals. It is
assumed that a fraction of the encounters lead to a conflict, from competing
interests, which is resolved through a contest. We assume that no more than
two players meet in the same contest, so that only pair-wise interactions are
considered. Thus, the state of the whole population is controlled by two
processes: one in which available players form pairs and become engaged in
contests, and one in which pairs break up and make players available. See
Fig. 1 for an illustration of these processes. We denote the combined
processes the social dynamics of the population.

A contest between two individuals, with waiting-times x and y, takes the
form of the war of attrition game. In general, x and y may be stochastic
variables, reflecting mixed strategies. From Section 4 and onward, we focus
on pure strategies. The duration of the game is given by the smallest of the
waiting-times. The player with the largest waiting-time gets the score 1, and
the other player gets the consolation prize, i.e., the score k, with 0 < k < 1.
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