Matematik

INTEGRATIONSTEORI (5p)

 $(\mathbf{GU}[MAF440], \mathbf{CTH}[TMV100])$

Dag, tid, sal: 8 oktober 2004, fm, v

Telefonvakt: 0740 459022

Hjälpmedel: Inga.

Inlämning skall ske i uppgifternas ordning; v.g. sidnumrera!

1. Suppose

$$f_n(x) = n \mid x \mid e^{-\frac{nx^2}{2}}, \ x \in \mathbf{R}, \ n \in \mathbf{N}_+.$$

Show that there is no $g \in L^1(m)$ such that $f_n \leq g$ for all $n \in \mathbb{N}_+$.

2. Set

$$f(x) = \lim_{T \to \infty} \int_0^T \frac{\sin t}{x + t} dt, \ x \ge 0$$

and

$$g(x) = \frac{f(x)}{\sqrt{x}}, \ x \ge 0.$$

Prove that g is Lebesgue integrable on $[0, \infty[$.

3. a) Let \mathcal{M} be an algebra of subsets of X and \mathcal{N} an algebra of subsets of Y. Furthermore, let S be the set of all finite unions of sets of the type $A \times B$, where $A \in \mathcal{M}$ and $B \in \mathcal{N}$. Prove that S is an algebra of subsets of $X \times Y$.

b) Assume \mathcal{M} is a σ -algebra of subsets of X and \mathcal{N} a σ -algebra of subsets of Y and let $(X \times Y, \mathcal{M} \otimes \mathcal{N}, \mu)$ be a finite positive measure space. Prove that to each $E \in \mathcal{M} \otimes \mathcal{N}$ and $\varepsilon > 0$ there exists $F \in S$ such that

$$\mu(E\Delta F) < \varepsilon.$$

- 4. Formulate and prove the Fatous Lemma.
- 5. Let \mathcal{C} be a collection of open balls and set $V = \bigcup_{B \in \mathcal{C}} B$. Prove that to each $c < m_n(V)$ there exist pairwise disjoint $B_1, ..., B_k \in \mathcal{C}$ such that

$$\sum_{i=1}^{k} m_n(B_i) > 3^{-n}c.$$