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CHAPTER 1

MEASURES

Introduction

The Riemann integral, dealt with in calculus courses, is well suited for com-
putations but less suited for dealing with limit processes. In this course we
will introduce the so called Lebesgue integral, which keeps the advantages of
the Riemann integral and eliminates its drawbacks. At the same time we will
develop a general measure theory which serves as the basis of contemporary
analysis and probability.
In this introductory chapter we set forth some basic concepts of measure

theory, which will open for abstract Lebesgue integration.

1.1. �-Algebras and Measures

Throughout this course

N = f0; 1; 2; :::g (the set of natural numbers)
Z = f:::;�2;�1; 0; 1; ; 2; :::g (the set of integers)
Q = the set of rational numbers
R = the set of real numbers
C = the set of complex numbers.

If A � R; A+ is the set of all strictly positive elements in A:
If f is a function of A into B; this means that to every x 2 A there

corresponds a point f(x) 2 B and we write f : A ! B: A function is often
called a map or a mapping. The function f is injective if

(x 6= y)) (f(x) 6= f(y))
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and surjective if to each y 2 B; there exists an x 2 A such that f(x) = y:
An injective and surjective function is said to be bijective.
A set A is �nite if either A is empty or there exist an n 2 N+ and a

bijection f : f1; :::; ng ! A: The empty set is denoted by �: A set A is said
to be denumerable if there exists a bijection f : N+ ! A: A subset of a
denumerable set is said to be at most denumerable.
Let X be a set. For any A � X; the indicator function �A of A relative

to X is de�ned by the equation

�A(x) =

�
1 if x 2 A
0 if x 2 Ac:

The indicator function �A is sometimes written 1A: We have the following
relations:

�Ac = 1� �A
�A\B = min(�A; �B) = �A�B

and
�A[B = max(�A; �B) = �A + �B � �A�B:

De�nition 1.1.1. Let X be a set.
a) A collection A of subsets of X is said to be an algebra in X if A has

the following properties:

(i) X 2 A:
(ii) A 2 A )Ac 2 A; where Ac is the complement of A relative to X:
(iii) If A;B 2 A then A [B 2 A:

(b) A collectionM of subsets of X is said to be a �-algebra in X ifM
is an algebra with the following property:

If An 2 M for all n 2 N+, then [1n=1An 2 M:
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If M is a �-algebra in X; (X;M) is called a measurable space and the
members of M are called measurable sets. The so called power set P(X),
that is the collection of all subsets of X, is a �-algebra in X: It is simple to
prove that the intersection of any family of �-algebras in X is a �-algebra. It
follows that if E is any subset of P(X); there is a unique smallest �-algebra
�(E) containing E ; namely the intersection of all �-algebras containing E :
The �-algebra �(E) is called the �-algebra generated by E : The �-algebra

generated by all open intervals in R is denoted by R. It is readily seen that
the �-algebra R contains every subinterval of R. Be fore we proceed, recall
that a subset E of R is open if to each x 2 E there exists an open subinterval
of R contained in E and containing x; the complement of an open set is said
to be closed. We claim that R contains every open U subset of R: To see
this suppose x 2 U and let x 2 ]a; b[ � U; where �1 < a < b < 1: Now
pick r; s 2 Q such that a < r < x < s < b: Then x 2 ]r; s[ � U and it follows
that U is the union of all bounded open intervals with rational boundary
points contained in U: Since this family of intervals is at most denumberable
we conclude that U 2 R: In addition, any closed set belongs to R since its
complements is open. It is by no means simple to grasp the de�nition of R at
this stage but the reader will successively see that the �-algebra R has very
nice properties. At the very end of Section 1.3, using the so called Axiom of
Choice, we will exemplify a subset of the real line which does not belong to
R. In fact, an example of this type can be constructed without the Axiom
of Choice (see Dudley�s book [D]).
In measure theory, inevitably one encounters 1: For example the real

line has in�nite length. Below [0;1] = [0;1[[f1g : The inequalities x � y
and x < y have their usual meanings if x; y 2 [0;1[. Furthermore, x � 1
if x 2 [0;1] and x < 1 if x 2 [0;1[ : We de�ne x +1 = 1 + x = 1 if
x; y 2 [0;1] ; and

x � 1 =1 � x =
�
0 if x = 0
1 if 0 < x � 1:

Sums and multiplications of real numbers are de�ned in the usual way.
If An � X; n 2 N+, and Ak \An = � if k 6= n, the sequence (An)n2N+ is

called a disjoint denumerable collection. If (X;M) is a measurable space, the
collection is called a denumerable measurable partition of A if A = [1n=1An
and An 2 M for every n 2 N+: Some authors call a denumerable collection
of sets a countable collection of sets.
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De�nition 1.1.2. (a) Let A be an algebra of subsets of X: A function
� : A ! [0;1] is called a content if

(i) �(�) = 0
(ii) �(A [B) = �(A) + �(B) if A;B 2 A and A \B = �:

(b) If (X;M) is a measurable space a content � de�ned on the �-algebraM
is called a positive measure if it has the following property:

For any disjoint denumerable collection (An)n2N+
of members ofM

�([1n=1An) = �1n=1�(An):

If (X;M) is a measurable space and the function � : M ! [0;1] is a
positive measure, (X;M; �) is called a positive measure space. The quantity
�(A) is called the �-measure of A or simply the measure of A if there is
no ambiguity. Here (X;M; �) is called a probability space if �(X) = 1; a
�nite positive measure space if �(X) < 1; and a �-�nite positive measure
space if X is a denumerable union of measurable sets with �nite �-measure.
The measure � is called a probability measure, �nite measure, and �-�nite
measure, if (X;M; �) is a probability space, a �nite positive measure space,
and a �-�nite positive measure space, respectively. A probability space is
often denoted by (
;F ; P ): A member A of F is called an event.
As soon as we have a positive measure space (X;M; �), it turns out to

be a fairly simple task to de�ne a so called �-integralZ
X

f(x)d�(x)

as will be seen in Chapter 2.



5

The class of all �nite unions of subintervals of R is an algebra which is
denoted by R0: If A 2 R0 we denote by l(A) the Riemann integralZ 1

�1
�A(x)dx

and it follows from courses in calculus that the function l : R0 ! [0;1] is a
content. The algebra R0 is called the Riemann algebra and l the Riemann
content. If I is a subinterval of R, l(I) is called the length of I: Below we
follow the convention that the empty set is an interval.
If A 2 P(X), cX(A) equals the number of elements in A, when A is a

�nite set, and cX(A) =1 otherwise. Clearly, cX is a positive measure. The
measure cX is called the counting measure on X:
Given a 2 X; the probability measure �a de�ned by the equation �a(A) =

�A(a); if A 2 P(X); is called the Dirac measure at the point a: Sometimes
we write �a = �X;a to emphasize the set X:
If � and � are positive measures de�ned on the same �-algebraM, the

sum � + � is a positive measure onM:More generally, �� + �� is a positive
measure for all real �; � � 0: Furthermore, if E 2 M; the function �(A) =
�(A \ E); A 2 M; is a positive measure. Below this measure � will be
denoted by �E and we say that �E is concentrated on E: If E 2M; the class
ME = fA 2M; A � Eg is a �-algebra of subsets of E and the function
�(A) = �(A), A 2 ME; is a positive measure. Below this measure � will be
denoted by �jE and is called the restriction of � toME:
Let I1; :::; In be subintervals of the real line. The set

I1 � :::� In = f(x1; :::; xn) 2 Rn; xk 2 Ik; k = 1; :::; ng

is called an n-cell in Rn; its volume vol(I1 � :::� In) is, by de�nition, equal
to

vol(I1 � :::� In) = �nk=1l(Ik):
If I1; :::; In are open subintervals of the real line, the n-cell I1 � :::� In is

called an open n-cell. The �-algebra generated by all open n-cells in Rn is
denoted by Rn: In particular, R1 = R. A basic theorem in measure theory
states that there exists a unique positive measure vn de�ned on Rn such that
the measure of any n-cell is equal to its volume. The measure vn is called the
volume measure on Rn or the volume measure on Rn: Clearly, vn is �-�nite.
The measure v2 is called the area measure on R2 and v1 the linear measure
on R:
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Theorem 1.1.1. The volume measure on Rn exists.

Theorem 1.1.1 will be proved in Section 1.5 in the special case n = 1. The
general case then follows from the existence of product measures in Section
3.4. An alternative proof of Theorem 1.1.1 will be given in Section 3.2. As
soon as the existence of volume measure is established a variety of interesting
measures can be introduced.
Next we prove some results of general interest for positive measures.

Theorem 1.1.2. Let A be an algebra of subsets of X and � a content
de�ned on A. Then,
(a) � is �nitely additive, that is

�(A1 [ ::: [ An) = �(A1) + :::+ �(An)

if A1; :::; An are pairwise disjoint members of A:
(b) if A;B 2 A;

�(A) = �(A nB) + �(A \B):

Moreover, if �(A \B) <1; then

�(A [B) = �(A) + �(B)� �(A \B)

(c) A � B implies �(A) � �(B) if A;B 2 A:
(d) � �nitely sub-additive, that is

�(A1 [ ::: [ An) � �(A1) + :::+ �(An)

if A1; :::; An are members of A:

If (X;M; �) is a positive measure space
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(e) �(An)! �(A) if A = [n2N+An; An 2M; and

A1 � A2 � A3 � ::: :

(f) �(An)! �(A) if A = \n2N+An; An 2M;

A1 � A2 � A3 � :::

and �(A1) <1:
(g) � is sub-additive, that is for any denumerable collection (An)n2N+

of
members of M,

�([1n=1An) � �1n=1�(An):

PROOF (a) If A1; :::; An are pairwise disjoint members of A;

�([nk=1Ak) = �(A1 [ ([nk=2Ak))

= �(A1) + �([nk=2Ak)
and, by induction, we conclude that � is �nitely additive.

(b) Recall that
A nB = A \Bc:

Now A = (A nB) [ (A \B) and we get

�(A) = �(A nB) + �(A \B):

Moreover, since A [B = (A nB) [B;

�(A [B) = �(A nB) + �(B)
and, if �(A \B) <1; we have

�(A [B) = �(A) + �(B)� �(A \B).

(c) Part (b) yields �(B) = �(B n A) + �(A \ B) = �(B n A) + �(A); where
the last member does not fall below �(A):
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(d) If (Ai)ni=1is a sequence of members of A de�ne the so called disjunction
(Bk)

n
k=1 of the sequence (Ai)

n
i=1 as

B1 = A1 and Bk = Ak n [k�1i=1Ai for 2 � k � n:
Then Bk � Ak; [ki=1Ai = [ki=1Bi; k = 1; ::; n; and Bi\Bj = � if i 6= j: Hence,
by Parts (a) and (c),

�([nk=1Ak) = �nk=1�(Bk) � �nk=1�(Ak):

(e) Set B1 = A1 and Bn = An n An�1 for n � 2: Then An = B1 [ :::: [ Bn;
Bi \Bj = � if i 6= j and A = [1k=1Bk: Hence

�(An) = �
n
k=1�(Bk)

and
�(A) = �1k=1�(Bk):

Now e) follows, by the de�nition of the sum of an in�nite series.

(f) Put Cn = A1 n An; n � 1: Then C1 � C2 � C3 � :::;

A1 n A = [1n=1Cn

and �(A) � �(An) � �(A1) <1: Thus

�(Cn) = �(A1)� �(An)

and Part (e) shows that

�(A1)� �(A) = �(A1 n A) = lim
n!1

�(Cn) = �(A1)� lim
n!1

�(An):

This proves (f).

(g) The result follows from Parts d) and e).
This completes the proof of Theorem 1.1.2.
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The hypothesis ��(A1) <1 �in Theorem 1.1.2 ( f) is not super�uous. If
cN+ is the counting measure onN+ and An = fn; n+ 1; :::g ; then cN+(An) =
1 for all n but A1 � A2 � :::: and cN+(\1n=1An) = 0 since \1n=1An = �:
If A;B � X; the symmetric di¤erence A�B is de�ned by the equation

A�B =def (A nB) [ (B n A):

Note that
�A�B =j �A � �B j :

Moreover, we have
A�B = Ac�Bc

and
([1i=1Ai)�([1i=1Bi) � [1i=1(Ai�Bi):

Example 1.1.1. Let � be a �nite positive measure on R: We claim that
to each set E 2 R and " > 0; there exists a set A; which is �nite union of
intervals (that is, A belongs to the Riemann algebra R0), such that

�(E�A) < ":

To see this let S be the class of all sets E 2 R for which the conclusion
is true. Clearly � 2 S and, moreover, R0 � S: If A 2 R0, Ac 2 R0 and
therefore Ec 2 S if E 2 S: Now suppose Ei 2 S; i 2 N+: Then to each " > 0
and i there is a set Ai 2 R0 such that �(Ei�Ai) < 2�i": If we set

E = [1i=1Ei

then
�(E�([1i=1Ai)) � �1i=1�(Ei�Ai) < ":

Here
E�([1i=1Ai) = fE \ (\1i=1Aci)g [ fEc \ ([1i=1Ai)g

and Theorem 1.1.2 (f) gives that

�(fE \ (\ni=1Aci)g [ f(Ec \ ([1i=1Ai)g) < "

if n is large enough (hint: \i2I(Di [ F ) = (\i2IDi) [ F ): But then

�(E� [ni=1 Ai) = �(fE \ (\ni=1Aci)g [ fEc \ ([ni=1Ai)g) < "
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if n is large enough we conclude that the set E 2 S: Thus S is a �-algebra
and since R0 � S � R it follows that S = R:

Exercises

1. Prove that the sets N�N = f(i; j); i; j 2 Ng and Q are denumerable.

2. Suppose A is an algebra of subsets of X and � and � two contents on A
such that � � � and �(X) = �(X) <1: Prove that � = �:

3. Suppose A is an algebra of subsets of X and � a content on A with
�(X) <1: Show that

�(A [B [ C) = �(A) + �(B) + �(C)

��(A \B)� �(A \ C)� �(B \ C) + �(A \B \ C):

4. A collection C of subsets of X is an algebra with the following property:
If An 2 C; n 2 N+ and Ak \ An = � if k 6= n, then [1n=1An 2 C. Prove that
C is a �-algebra.

5. Let (X;M) be a measurable space and (�k)
1
k=1 a sequence of positive

measures onM such that �1 � �2 � �3 � ::: . Prove that the set function

�(A) = lim
k!1

�k(A); A 2M

is a positive measure.

6. Let (X;M; �) be a positive measure space. Show that

�(\nk=1Ak) � n

q
�nk=1�(Ak)
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for all A1; :::; An 2M:

7. Let (X;M; �) be a �-�nite measure space with �(X) =1: Show that for
any r 2 [0;1[ there is some A 2M with r < �(A) <1:

8. Show that the symmetric di¤erence of sets is associative:

A�(B�C) = (A�B)�C:

9. (X;M; �) is a �nite positive measure space. Prove that

j �(A)� �(B) j� �(A�B):

10. Let E = 2N: Prove that

cN(E�A) =1

if A is a �nite union of intervals.

11. Suppose (X;P(X); �) is a �nite positive measure space such that �(fxg) >
0 for every x 2 X: Set

d(A;B) = �(A�B); A;B 2 P(X):

Prove that
d(A;B) = 0 , A = B;

d(A;B) = d(B;A)

and
d(A;B) � d(A;C) + d(C;B):

12. Let (X;M; �) be a �nite positive measure space. Prove that

�([ni=1Ai) � �ni=1�(Ai)� �1�i<j�n�(Ai \ Aj)
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for all A1; :::; An 2M and integers n � 2:

1.2. Measure Determining Classes

Suppose � and � are probability measures de�ned on the same �-algebraM,
which is generated by a class E : If � and � agree on E ; is it then true that �
and � agree onM? The answer is in general no. To show this, let

X = f1; 2; 3; 4g

and
E = ff1; 2g ; f1; 3gg :

Then �(E) = P(X): If � = 1
4
cX and

� =
1

6
�X;1 +

1

3
�X;2 +

1

3
�X;3 +

1

6
�X;4

then � = � on E and � 6= �:
In this section we will prove a basic result on measure determining classes

for �-�nite measures. In this context we will introduce so called �-systems
and �-systems, which will also be of great value later in connection with the
construction of so called product measures in Chapter 3.

De�nition 1.2.1. A class G of subsets of X is a �-system if A \ B 2 G
for all A;B 2 G:

The class of all open n-cells in Rn is a �-system.

De�nition 1.2.2. A class D of subsets of X is a �-system if the following
properties hold:
(a) X 2 D:
(b) If A;B 2 D and A � B; then B n A 2 D:
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(c) If (An)n2N+ is a disjoint denumerable collection of members of the
class D; then [1n=1An 2 D:

Theorem 1.2.1. If a class M is both a �-system and �-system, then M is
a �-algebra.

PROOF. If A 2 M; then Ac = X n A 2 M since X 2 M and M is a
�-system. Moreover, if (An)n2N+ is a denumerable collection of members of
M;

A1 [ ::: [ An = (Ac1 \ ::: \ Acn)c 2M
for each n; since M is a �-system and a �-system. Let (Bn)1n=1 be the
disjungation of (An)1n=1: Then (Bn)n2N+ is a disjoint denumerable collection
of members ofM and De�nition 1.2.2(c) implies that [1n=1An = [1n=1Bn 2
M:

Theorem 1.2.2. Let G be a �-system and D a �-system such that G �
D: Then �(G) � D:

PROOF. LetM be the intersection of all �-systems containing G: The class
M is a �-system and G �M � D. In view of Theorem 1.2.1 M is a �-
algebra, ifM is a �-system and in that case �(G) � M: Thus the theorem
follows if we show thatM is a �-system.
Given C � X; denote by DC be the class of all D � X such that D\C 2

M.

CLAIM 1. If C 2M; then DC is a �-system.

PROOF OF CLAIM 1. First X 2 DC since X \ C = C 2 M: Moreover, if
A;B 2 DC and A � B; then A \ C;B \ C 2M and

(B n A) \ C = (B \ C) n (A \ C) 2M:

Accordingly from this, BnA 2 DC : Finally, if (An)n2N+ is a disjoint denumer-
able collection of members of DC , then (An\C)n2N+ is disjoint denumerable
collection of members ofM and

([n2N+An) \ C = [n2N+(An \ C) 2M:
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Thus [n2N+An 2 DC :

CLAIM 2. If A 2 G; thenM� DA:

PROOF OF CLAIM 2. If B 2 G; A \ B 2 G �M: Thus B 2 DA: We
have proved that G � DA and remembering thatM is the intersection of all
�-systems containing G Claim 2 follows since DA is a �-system.

To complete the proof of Theorem 1.2.2, observe that B 2 DA if and only
if A 2 DB: By Claim 2, if A 2 G and B 2M; then B 2 DA that is A 2 DB:
Thus G � DB if B 2 M. Now the de�nition ofM implies thatM� DB if
B 2 M: The proof is almost �nished. In fact, if A;B 2 M then A 2 DB
that is A \B 2M: Theorem 1.2.2 now follows from Theorem 1.2.1.

Theorem 1.2.3. Let � and � be positive measures on M = �(G), where
G is a �-system, and suppose �(A) = �(A) for every A 2 G:
(a) If � and � are probability measures, then � = �:
(b) Suppose there exist En 2 G; n 2 N+; such that X = [1n=1En;
E1 � E2 � :::; and

�(En) = �(En) <1; all n 2 N+:

Then � = �:

PROOF. (a) Let
D = fA 2M; �(A) = �(A)g :

It is immediate that D is a �-system and Theorem 1.2.2 implies thatM =
�(G) � D since G � D and G is a �-system.

(b) If �(En) = �(En) = 0 for all all n 2 N+, then

�(X) = lim
n!1

�(En) = 0
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and, in a similar way, �(X) = 0: Thus � = �: If �(En) = �(En) > 0; set

�n(A) =
1

�(En)
�(A \ En) and �n(A) =

1

�(En)
�(A \ En)

for each A 2M: By Part (a) �n = �n and we get

�(A \ En) = �(A \ En)

for each A 2M: Theorem 1.1.2(e) now proves that � = �:

Theorem 1.2.3 implies that there is at most one positive measure de�ned
on Rn such that the measure of any open n-cell in Rn equals its volume.
Next suppose f : X ! Y and let A � X and B � Y: The image of A

and the inverse image of B are

f(A) = fy; y = f(x) for some x 2 Ag

and
f�1(B) = fx; f(x) 2 Bg

respectively. Note that
f�1(Y ) = X

and
f�1(Y nB) = X n f�1(B):

Moreover, if (Ai)i2I is a collection of subsets of X and (Bi)i2I is a collection
of subsets of Y

f([i2IAi) = [i2If(Ai)
and

f�1([i2IBi) = [i2If�1(Bi):
Given a class E of subsets of Y; set

f�1(E) =
�
f�1(B); B 2 E

	
:

If (Y;N ) is a measurable space, it follows that the class f�1(N ) is a �-algebra
in X: If (X;M) is a measurable space�

B; f�1(B) 2M
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is a �-algebra in Y . Thus, given a class E of subsets of Y;

�(f�1(E)) = f�1(�(E)):

De�nition 1.2.3. Let (X;M) and (Y;N ) be measurable spaces. The func-
tion f : X ! Y is said to be (M;N )-measurable if f�1(N ) �M. If we say
that f : (X;M) ! (Y;N ) is measurable this means that f : X ! Y is an
(M;N )-measurable function.

Theorem 1.2.4. Let (X;M) and (Y;N ) be measurable spaces and suppose
E generates N : The function f : X ! Y is (M;N )-measurable if

f�1(E)�M:

PROOF. The assumptions yield

�(f�1(E))�M:

Since
�(f�1(E)) = f�1(�(E)) = f�1(N )

we are done.

Corollary 1.2.1. A function f : X ! R is (M;R)-measurable if and only
if the set f�1(]�;1[) 2M for all � 2 R:

If f : X ! Y is (M;N )-measurable and � is a positive measure onM,
the equation

�(B) = �(f�1(B)), B 2 N

de�nes a positive measure � on N : We will write � = �f�1; � = f(�) or
� = �f : The measure � is called the image measure of � under f and f is
said to transport � to �: Two (M;N )-measurable functions f : X ! Y and
g : X ! Y are said to be �-equimeasurable if f(�) = g(�):
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As an example, let a 2 Rn and de�ne f(x) = x+a if x 2 Rn: If B � Rn;

f�1(B) = fx; x+ a 2 Bg = B � a:

Thus f�1(B) is an open n-cell if B is, and Theorem 1.2.4 proves that f is
(Rn;Rn)-measurable. Now, granted the existence of volume measure vn; for
every B 2 Rn de�ne

�(B) = f(vn)(B) = vn(B � a):

Then �(B) = vn(B) if B is an open n-cell and Theorem 1.2.3 implies that
� = vn: We have thus proved the following

Theorem 1.2.5. For any A 2 Rn and x 2 Rn

A+ x 2 Rn

and
vn(A+ x) = vn(A):

Suppose (
;F ; P ) is a probability space. A measurable function � de�ned
on 
 is called a random variable and the image measure P� is called the
probability law of �: We sometimes write

L(�) = P�:

Here are two simple examples.
If the range of a random variable � consists of n points S = fs1; :::; sng

(n � 1) and P� = 1
n
cS; � is said to have a uniform distribution in S. Note

that
P� =

1

n
�nk=1�sk :

Suppose � > 0 is a constant. If a random variable � has its range in N
and

P� = �
1
n=0

�n

n!
e���n

then � is said to have a Poisson distribution with parameter �:
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Exercises

1. Let f : X ! Y , A � X; and B � Y: Show that

f(f�1(B)) � B and f�1(f(A)) � A:

2. Let (X;M) be a measurable space and suppose A � X: Show that the
function �A is (M;R)-measurable if and only if A 2M:

3. Suppose (X;M) is a measurable space and fn : X ! R; n 2 N; a
sequence of (M;R)-measurable functions such that

lim
n!1

fn(x) exists and = f(x) 2 R

for each x 2 X: Prove that f is (M;R)-measurable.

4. Suppose f : (X;M) ! (Y;N ) and g : (Y;N ) ! (Z;S) are measurable.
Prove that g � f is (M;S)-measurable.

5. Granted the existence of volume measure vn, show that vn(rA) = rnvn(A)
if r � 0 and A 2 R:

6. Let � be the counting measure on Z2 and f(x; y) = x; (x; y) 2 Z2: The
measure � is �-�nite. Prove that the image measure f(�) is not �-�nite.

7. Let �; � : R! [0;1] be two positive measures such that �(I) = �(I) <1
for each open subinterval of R: Prove that � = �:
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8. Suppose � has a Poisson distribution with parameter �: Show that P� [2N] =
e�� cosh�:

9. Find a �-system which is not a �-algebra.

1.3. Lebesgue Measure

Once the problem about the existence of volume measure is solved the exis-
tence of the so called Lebesgue measure is simple to establish as will be seen
in this section. We start with some concepts of general interest.
If (X;M; �) is a positive measure space, the zero set Z� of � is, by

de�nition, the set at all A 2 M such that �(A) = 0: An element of Z� is
called a null set or �-null set. If

(A 2 Z� and B � A)) B 2M

the measure space (X;M; �) is said to be complete. In this case the measure
� is also said to be complete. The positive measure space (X; f�;Xg ; �);
whereX = f0; 1g and � = 0; is not complete sinceX 2 Z� and f0g =2 f�;Xg :

Theorem 1.3.1 If (En)1n=1 is a denumerable collection of members of Z�
then [1n=1En 2 Z�:

PROOF We have

0 � �([1n=1En) � �1n=1�(En) = 0

which proves the result.

Granted the existence of linear measure v1 it follows from Theorem 1.3.1
that Q 2 Zv1 since Q is countable and fag 2 Zv1 for each real number a.
Suppose (X;M; �) is an arbitrary positive measure space. It turns out

that � is the restriction to M of a complete measure. To see this suppose
M� is the class of all E � X is such that there exist sets A;B 2M such that
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A � E � B and B nA 2 Z�: It is obvious that X 2M� sinceM�M�: If
E 2 M�; choose A;B 2 M such that A � E � B and B n A 2 Z�: Then
Bc � Ec � Ac and Ac nBc = B nA 2 Z� and we conclude that Ec 2M�: If
(Ei)

1
i=1 is a denumerable collection of members ofM�; for each i there exist

sets Ai; Bi 2M such that Ai � E � Bi and Bi n Ai 2 Z�: But then

[1i=1Ai � [1i=1Ei � [1i=1Bi

where [1i=1Ai;[1i=1Bi 2M. Moreover, ([1i=1Bi) n ([1i=1Ai) 2 Z� since

([1i=1Bi) n ([1i=1Ai) � [1i=1(Bi n Ai):

Thus [1i=1Ei 2M� andM� is a �-algebra.
If E 2M; suppose Ai; Bi 2M are such that Ai � E � Bi and Bi nAi 2

Z� for i = 1; 2: Then for each i; (B1 \B2) n Ai 2 Z� and

�(B1 \B2) = �((B1 \B2) n Ai) + �(Ai) = �(Ai):

Thus the real numbers �(A1) and �(A2) are the same and we de�ne ��(E) to
be equal to this common number. Note also that �(B1) = ��(E): It is plain
that ��(�) = 0: If (Ei)1i=1 is a disjoint denumerable collection of members
of M; for each i there exist sets Ai; Bi 2 M such that Ai � Ei � Bi and
Bi n Ai 2 Z�: From the above it follows that

��([1i=1Ei) = �([1i=1Ai) = �1n=1�(Ai) = �1n=1��(Ei):

We have proved that �� is a positive measure on M�. If E 2 Z�� the
de�nition of �� shows that any set A � E belongs to the �-algebra M�: It
follows that the measure �� is complete and its restriction toM equals �:
The measure �� is called the completion of � andM� is called the com-

pletion ofM with respect to �:

De�nition 1.3.1 The completion of volume measure vn on Rn is called
Lebesgue measure on Rn and is denoted by mn: The completion of Rn with
respect to vn is called the Lebesgue �-algebra in Rn and is denoted by R�

n :
A member of the class R�

n is called a Lebesgue measurable set in R
n or a

Lebesgue set inRn: A function f : Rn ! R is said to be Lebesgue measurable
if it is (R�

n ;R)-measurable. Below, m1 is written m if this notation will not
lead to misunderstanding. Furthermore, R�

1 is written R�.
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Theorem 1.3.2. Suppose E 2 R�
n and x 2Rn: Then E + x 2 R�

n and
mn(E + x) = mn(E):

PROOF. Choose A;B 2 Rn such that A � E � B and B n A 2 Zvn : Then,
by Theorem 1.2.5, A + x;B + x 2 Rn; vn(A + x) = vn(A) = mn(E); and
(A + x) n (B + x) = (A n B) + x 2 Zvn : Since A + x � E + x � B + x the
theorem is proved.

The Lebesgue �-algebra in Rn is very large and contains each set of
interest in analysis and probability. In fact, in most cases, the �-algebraRn is
su¢ ciently large but there are some exceptions. For example, if f : Rn ! Rn

is continuous and A 2 Rn, the image set f(A) need not belong to the class
Rn (see e.g. the Dudley book [D]). To prove the existence of a subset of the
real line, which is not Lebesgue measurable we will use the so called Axiom
of Choice.

Axiom of Choice. If (Ai)i2I is a non-empty collection of non-empty sets,
there exists a function f : I ! [i2IAi such that f(i) 2 Ai for every i 2 I:

Let X and Y be sets. The set of all ordered pairs (x; y); where x 2 X
and y 2 Y is denoted by X � Y: An arbitrary subset R of X � Y is called a
relation. If (x; y) 2 R , we write x s y: A relation is said to be an equivalence
relation on X if X = Y and

(i) x s x (re�exivity)
(ii) x s y ) y s x (symmetry)
(ii) (x s y and y s z) ) x s z (transitivity)

The equivalence class R(x) =def fy; y s xg : The de�nition of the equiv-
alence relation s implies the following:

(a) x 2 R(x)
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(b) R(x) \R(y) 6= �) R(x) = R(y)
(c) [x2XR(x) = X:

An equivalence relation leads to a partition of X into a disjoint collection
of subsets of X:
Let X =

�
�1
2
; 1
2

�
and de�ne an equivalence relation for numbers x; y in X

by stating that x s y if x� y is a rational number. By the Axiom of Choice
it is possible to pick exactly one element from each equivalence class. Thus
there exists a subset NL of X which contains exactly one element from each
equivalence class.
If we assume that NL 2 R� we get a contradiction as follows. Let (ri)1i=1

be an enumeration of the rational numbers in [�1; 1]. Then

X � [1i=1(ri +NL)

and it follows from Theorem 1.3.1 that ri + NL =2 Zm for some i: Thus, by
Theorem 1.3.2, NL =2 Zm:
Now assume (ri + NL) \ (rj + NL) 6= �: Then there exist a0; a00 2 NL

such that ri + a0 = rj + a00 or a0 � a00 = rj � ri: Hence a0 s a00 and it follows
that a0 and a00 belong to the same equivalence class. But then a0 = a00: Thus
ri = rj and we conclude that (ri + NL)i2N+ is a disjoint enumeration of
Lebesgue sets. Now, since

[1i=1(ri +NL) �
�
�3
2
;
3

2

�
it follows that

3 � m([1i=1(ri +NL)) = �1n=1m(NL):

But then NL 2 Zm; which is a contradiction. Thus NL =2 R�:

In the early 1970�Solovay [S] proved that it is consistent with the usual
axioms of Set Theory, excluding the Axiom of Choice, that every subset of
R is Lebesgue measurable.
From the above we conclude that the Axiom of Choice implies the exis-

tence of a subset of the set of real numbers which does not belong to the class
R: Interestingly enough, such an example can be given without any use of
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the Axiom of Choice and follows naturally from the theory of analytic sets.
The interested reader may consult the Dudley book [D] :

Exercises

1. (X;M; �) is a positive measure space. Prove or disprove: If A � E � B
and �(A) = �(B) then E belongs to the domain of the completion ��:

2. Prove or disprove: If A and B are not Lebesgue measurable subsets of
R; then A [B is not Lebesgue measurable.

3. Let (X;M; �) be a complete positive measure space and suppose A;B 2
M, where B n A is a �-null set. Prove that E 2 M if A � E � B (stated
otherwiseM� =M).

4. Suppose E � R and E =2 R�. Show there is an " > 0 such that

m(B n A) � "

for all A;B 2 R� such that A � E � B:

5. Suppose (X;M; �) is a positive measure space and (Y;N ) a measurable
space. Furthermore, suppose f : X ! Y is (M;N )-measurable and let
� = �f�1; that is �(B) = �(f�1(B)); B 2 N : Show that f is (M�;N�)-
measurable, whereM� denotes the completion ofM with respect to � and
N� the completion of N with respect to �:

1.4. Carathéodory�s Theorem
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In these notes we exhibit two famous approaches to Lebesgue measure: One
is based on the Carathéodory Theorem, which we present in this section, and
the other one, due to F. Riesz, is a representation theorem of positive linear
functionals on spaces of continuous functions in terms of positive measures.
The latter approach, is presented in Chapter 3. Both methods depend on
topological concepts such as compactness.

De�nition 1.4.1. A function � : P(X) ! [0;1] is said to be an outer
measure if the following properties are satis�ed:

(i) �(�) = 0:
(ii) �(A) � �(B) if A � B:
(iii) for any denumerable collection (An)1n=1 of subsets of X

�([1n=1An) � �1n=1�(An):

Since
E = (E \ A) [ (E \ Ac)

an outer measure � satis�es the inequality

�(E) � �(E \ A) + �(E \ Ac):

If � is an outer measure on X we de�ne M(�) as the set of all A � X
such that

�(E) = �(E \ A) + �(E \ Ac) for all E � X

or, what amounts to the same thing,

�(E) � �(E \ A) + �(E \ Ac) for all E � X:

The next theorem is one of the most important in measure theory.
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Theorem 1.4.1. ( Carathéodory�s Theorem) Suppose � is an outer
measure. The class M(�) is a �-algebra and the restriction of � toM(�) is
a complete measure.

PROOF. Clearly, � 2 M(�) and Ac 2 M(�) if A 2 M(�): Moreover, if
A;B 2M(�) and E � X;

�(E) = �(E \ A) + �(E \ Ac)

= �(E \ A \B) + �(E \ A \Bc)
+�(E \ Ac \B) + �(E \ Ac \Bc):

But
A [B = (A \B) [ (A \Bc) [ (Ac \B)

and
Ac \Bc = (A [B)c

and we get
�(E) � �(E \ (A [B)) + �(E \ (A [B)c):

It follows that A[B 2M(�) and we have proved that the classM(�) is an
algebra. Now if A;B 2M(�) are disjoint

�(A [B) = �((A [B) \ A) + �((A [B) \ Ac) = �(A) + �(B)

and therefore the restriction of � toM(�) is a content.
Next we prove thatM(�) is a �-algebra. Let (Ai)1i=1 be a disjoint denu-

merable collection of members ofM(�) and set for each n 2 N

Bn = [1�i�nAi and B = [1i=1Ai

(here B0 = �). Then for any E � X;

�(E \Bn) = �(E \Bn \ An) + �(E \Bn \ Acn)

= �(E \ An) + �(E \Bn�1)
and, by induction,

�(E \Bn) = �ni=1�(E \ Ai):
But then

�(E) = �(E \Bn) + �(E \Bcn)
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� �ni=1�(E \ Ai) + �(E \Bc)
and letting n!1;

�(E) � �1i=1�(E \ Ai) + �(E \Bc)

� �([1i=1(E \ Ai)) + �(E \Bc)

= �(E \B) + �(E \Bc) � �(E):
All the inequalities in the last calculation must be equalities and we conclude
that B 2M(�) and, choosing E = B; results in

�(B) = �1i=1�(Ai):

Thus M(�) is a �-algebra and the restriction of � to M(�) is a positive
measure.
Finally we prove that the the restriction of � to M(�) is a complete

measure. Suppose B � A 2M(�) and �(A) = 0: If E � X;

�(E) � �(E \B) + �(E \Bc) � �(E \Bc) � �(E)

and so B 2M(�): The theorem is proved.

Exercises

1. Suppose �i : P(X) ! [0;1[ ; i = 1; 2; are outer measures. Prove that
� = max(�1; �2) is an outer measure.

2. Suppose a; b 2 R and a 6= b: Set � = max(�a; �b): Prove that

fag ; fbg =2M(�):

1.5. Existence of Linear Measure



27

The purpose of this section is to show the existence of linear measure on R
using the Carathéodory Theorem and a minimum of topology.
First let us recall the de�nition of in�mum and supremum of a non-

empty subset of the extended real line. Suppose A is a non-empty subset
of [�1;1] = R[f�1;1g : We de�ne �1 � x and x � 1 for all x 2
[�1;1] : An element b 2 [�1;1] is called a majorant of A if x � b for all
x 2 A and a minorant if x � b for all x 2 A: The Supremum Axiom states
that A possesses a least majorant, which is denoted by supA. From this
follows that if A is non-empty, then A possesses a greatest minorant, which
is denoted by inf A. (Actually, the Supremum Axiom is a theorem in courses
where time is spent on the de�nition of real numbers.)

Theorem 1.5.1. (The Heine-Borel Theorem; weak form) Let [a; b] be
a closed bounded interval and (Ui)i2I a collection of open sets such that

[i2IUi � [a; b] :

Then
[i2JUi � [a; b]

for some �nite subset J of I:

PROOF. Let A be the set of all x 2 [a; b] such that

[i2JUi � [a; x]

for some �nite subset J of I: Clearly, a 2 A since a 2 Ui for some i: Let
c = supA: There exists an i0 such that c 2 Ui0 : Let c 2 ]a0; b0[ � Ui0 ; where
a0 < b0: Furthermore, by the very de�nition of least upper bound, there
exists a �nite set J such that

[i2JUi � [a; (a0 + c)=2] :

Hence
[i2J[fi0gUk � [a; (c+ b0)=2]

and it follows that c 2 A and c = b. The lemma is proved.
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A subset K of R is called compact if for every family of open subsets Ui;
i 2 I; with [i2IUi � K we have [i2JUi � K for some �nite subset J of I:
The Heine-Borel Theorem shows that a closed bounded interval is compact.
If x; y 2 R and E; F � R; let

d(x; y) =j x� y j

be the distance between x and y; let

d(x;E) = inf
u2E

d(x; u)

be the distance from x to E; and let

d(E;F ) = inf
u2E;v2F

d(u; v)

be the distance between E and F (here the in�mum of the emty set equals
1): Note that for any u 2 E;

d(x; u) � d(x; y) + d(y; u)

and, hence
d(x;E) � d(x; y) + d(y; u)

and
d(x;E) � d(x; y) + d(y; E):

By interchanging the roles of x and y and assuming that E 6= �; we get

j d(x;E)� d(y; E) j� d(x; y):

Note that if F � R is closed and x =2 F; then d(x; F ) > 0:
An outer measure � : P(R)! [0;1] is called a metric outer measure if

�(A [B) = �(A) + �(B)

for all A;B 2 P(R) such that d(A;B) > 0:

Theorem 1.5.2. If � : P(R)! [0;1] is a metric outer measure, then
R �M(�):
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PROOF. Let F 2 P(R) be closed. It is enough to show that F 2M(�): To
this end we choose E � X with �(E) <1 and prove that

�(E) � �(E \ F ) + �(E \ F c):

Let n � 1 be an integer and de�ne

An =

�
x 2 E \ F c; d(x; F ) � 1

n

�
:

Note that An � An+1 and

E \ F c = [1n=1An:

Moreover, since � is a metric outer measure

�(E) � �((E \ F ) [ An) = �(E \ F ) + �(An)

and, hence, proving
�(E \ F c) = lim

n!1
�(An)

we are done.
Let Bn = An+1 \ Acn: It is readily seen that

d(Bn+1; An) �
1

n(n+ 1)

since if x 2 Bn+1 and
d(x; y) <

1

n(n+ 1)

then

d(y; F ) � d(y; x) + d(x; F ) < 1

n(n+ 1)
+

1

n+ 1
=
1

n
:

Now
�(A2k+1) � �(B2k [ A2k�1) = �(B2k) + �(A2k�1)

� ::: � �ki=1�(B2i)

and in a similar way
�(A2k) � �ki=1�(B2i�1):
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But �(An) � �(E) <1 and we conclude that

�1i=1�(Bi) <1:

We now use that
E \ F c = An [ ([1i=nBi)

to obtain
�(E \ F c) � �(An) + �1i=n�(Bi):

Now, since �(E \ F c) � �(An),

�(E \ F c) = lim
n!1

�(An)

and the theorem is proved.

PROOF OF THEOREM 1.1.1 IN ONE DIMENSION. Suppose � > 0: If
A � R; de�ne

��(A) = inf �
1
k=1l(Ik)

the in�mum being taken over all open intervals Ik with l(Ik) < � such that

A � [1k=1Ik:

Obviously, ��(�) = 0 and ��(A) � ��(B) if A � B: Suppose (An)1n=1 is a
denumerable collection of subsets of R and let " > 0: For each n there exist
intervals Ikn; k 2 N+; such that l(Ikn) < �;

An � [1k=1Ikn

and
�1k=1l(Ikn) � ��(An) + "2�n:

Then
A =def [1n=1An � [1k;n=1Ikn

and
�1k;n=1l(Ikn) � �1n=1��(An) + ":

Thus
��(A) � �1n=1��(An) + "
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and, since " > 0 is arbitrary,

��(A) � �1n=1��(An):

It follows that �� is an outer measure.
If I is an open interval it is simple to see that

��(I) � l(I):

To prove the reverse inequality, choose a closed bounded interval J � I: Now,
if

I � [1k=1Ik
where each Ik is an open interval of l(Ik) < �; it follows from the Heine-Borel
Theorem that

J � [nk=1Ik
for some n: Hence

l(J) � �nk=1l(Ik) � �1k=1l(Ik)
and it follows that

l(J) � ��(I)
and, accordingly from this,

l(I) � ��(I):
Thus, if I is an open interval, then

��(I) = l(I).

Note that ��1 � ��2 if 0 < �1 � �2: We de�ne

�0(A) = lim
�!0

��(A) if A � R:

It obvious that �0 is an outer measure such that �0(I) =l(I); if I is an open
interval.
To complete the proof we show that �0 is a metric outer measure. To this

end let A;B � R and d(A;B) > 0: Suppose 0 < � < d(A;B) and

A [B � [1k=1Ik

where each Ik is an open interval with l(Ik) < �: Let

� = fk; Ik \ A 6= �g



32

and
� = fk; Ik \B 6= �g :

Then � \ � = �;
A � [k2�Ik

and
B � [k2�Ik

and it follows that

�1k=1l(Ik) � �k2�l(Ik) + �k2�l(Ik)

� ��(A) + ��(B):

Thus
��(A [B) � ��(A) + ��(B)

and by letting � ! 0 we have

�0(A [B) � �0(A) + �0(B)

and
�0(A [B) = �0(A) + �0(B):

Finally by applying the Carathéodory Theorem and Theorem 1.5.2 it
follows that the restriction of �0 to R equals v1.

We end this section with some additional results of great interest.

Theorem 1.5.3. For any � > 0; �� = �0: Moreover, if A � R

�0(A) = inf �
1
k=1l(Ik)

the in�mum being taken over all open intervals Ik; k 2 N+; such that
[1k=1Ik � A:
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PROOF. It follows from the de�nition of �0 that �� � �0: To prove the
reverse inequality let A � R and choose open intervals Ik; k 2 N+; such that
[1k=1Ik � A: Then

�0(A) � �0([1k=1Ik) � �1k=1�0(Ik)

= �1k=1l(Ik):

Hence
�0(A) � inf �1k=1l(Ik)

the in�mum being taken over all open intervals Ik; k 2 N+; such that
[1k=1Ik � A: Thus �0(A) � ��(A); which completes the proof of Theorem
1.5.3.

Theorem 1.5.4. If A � R;

�0(A) = inf
U�A
U open

�0(U):

Moreover, if A 2M(�0);

�0(A) = sup
K�A

K closed bounded interval

�0(K):

PROOF. If A � U , �0(A) � �0(U): Hence

�0(A) � inf
U�A
U open

�0(U):

Next let " > 0 be �xed and choose open intervals Ik; k 2 N+; such that
[1k=1Ik � A and

�1k=1l(Ik) � �0(A) + "
(here observe that it may happen that �0(A) = 1). Then the set U =def
[1k=1Ik is open and

�0(U) � �1k=1�0(Ik) � �1k=1l(Ik) � �0(A) + ":

Thus
inf
U�A
U open

�0(U) � �0(A)
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and we have proved that

�0(A) = inf
U�A
U open

�0(U):

If K � A; �0(K) � �0(A) and, accordingly from this,

sup
K�A

K closed bounded

�0(K) � �0(A):

To prove the reverse inequality we �rst assume that A 2M(�0) is bounded.
Let " > 0 be �xed and suppose J is a closed bounded interval containing A:
Then we know from the �rst part of Theorem 1.5.4 already proved that there
exists an open set U � J r A such that

�0(U) < �0(J r A) + ":

But then

�0(J) � �0(J r U) + �0(U) < �0(J r U) + �0(J r A) + "

and it follows that
�0(A)� " < �0(J n U):

Since J r U is a closed bounded set contained in A we conclude that

�0(A) � sup
K�A

K closed bounded

�0(K):

If A 2 M(�0) let An = A \ [�n; n] ; n 2 N+: Then given " > 0 and n 2
N+; let Kn be a closed bounded subset of An such that �0(Kn) > �0(An)�":
Clearly, there is no loss of generality to assume that K1 � K2 � K3 � :::
and by letting n tend to plus in�nity we get

lim
n!1

�0(Kn) � �0(A)� ":

Hence
�0(A) = sup

K�A
K compact

�0(K):

and Theorem 1.5.4 is completely proved.
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Theorem 1.5.5. Lebesgue measure m1 equals the restriction of �0 toM(�0):

PROOF. Recall that linear measure v1 equals the restriction of �0 to R and
m1 = �v1: First suppose E 2 R� and choose A;B 2 R such that A � E � B
and BrA 2 Zv1 : But then �0(ErA) = 0 and E = A[(ErA) 2M(�0) since
the Carathéodory Theorem gives us a complete measure. Hence m1(E) =
v1(A) = �0(E).
Conversely suppose E 2M(�0):We will prove that E 2 R� andm1(E) =

�0(E). First assume thatE is bounded. Then for each positive integer n there
exist open Un � E and closed bounded Kn � E such that

�0(Un) < �0(E) + 2
�n

and

�0(Kn) > �0(E)� 2�n:
The de�nitions yield A = [11 Kn; B = \11 Un 2 R and

�0(E) = �0(A) = �0(B) = v1(A) = v1(B) = m1(E):

It follows that E 2 R� and �0(E) = m1(E):
In the general case set En = E \ [�n; n] ; n 2 N+: Then from the above

En 2 R� and �0(En) = m1(En) for each n and Theorem 1.5.5 follows by
letting n go to in�nity.

The Carathéodory Theorem can be used to show the existence of volume
measure on Rn but we do not go into this here since its existence follows by
several other means below. By passing, let us note that the Carathéodory
Theorem is very e¢ cient to prove the existence of so called Haussdor¤ mea-
sures (see e.g. [F ]); which are of great interest in Geometric Measure Theory.

Exercises

1. Prove that a subset K of R is compact if and only if K is closed and
bounded.
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2. Suppose A 2 R� and m(A) < 1: Set f(x) = m(A \ ]�1; x]); x 2 R:
Prove that f is continuous.

3. Suppose A 2 Zm and B = fx3;x 2 Ag : Prove that B 2 Zm:

4. Let A be the set of all real numbers x such that

j x� p
q
j� 1

q3

for in�nitely many pairs of positive integers p and q: Prove that A 2 Zm:

5. Let I1; :::; In be open subintervals of R such that

Q\ [0; 1] � [nk=1Ik:

Prove that �nk=1m(Ik) � 1:

6. If E 2 R� and m(E) > 0; for every � 2 ]0; 1[ there is an interval I such
that m(E \ I) > �m(I). (Hint: m(E) = inf �1k=1m(Ik), where the in�mum
is taken over all intervals such that [1k=1Ik � E:)

7. If E 2 R� andm(E) > 0; then the set E�E = fx� y;x; y 2 Eg contains
an open non-empty interval centred at 0:(Hint: Take an interval I with
m(E\I) � 3

4
m(I): Set " = 1

2
m(I): If j x j� "; then (E\I)\(x+(E\I)) 6= �:)

8. Let � be the restriction of the positive measure �1k=1�R; 1
k
to R: Prove that

inf
U �A
U open

�(U) > �(A)

if A = f0g :
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1.6. Positive Measures Induced by Increasing Right Continuous
Functions

Suppose F : R ! [0;1[ is a right continuous increasing function such that

lim
x!�1

F (x) = 0:

Set
L = lim

x!1
F (x):

We will prove that there exists a unique positive measure � : R! [0; L] such
that

�(]�1; x]) = F (x); x 2 R:

The special case L = 0 is trivial so let us assume L > 0 and introduce

H(y) = inf fx 2 R;F (x) � yg ; 0 < y < L:

The de�nition implies that the function H increases.
Suppose a is a �xed real number. We claim that

fy 2 ]0; L[ ; H(y) � ag = ]0; F (a)] \ ]0; L[ :

To prove this �rst suppose that y 2 ]0; L[ and H(y) � a: Then to each
positive integer n; there is an xn 2 [H(y); H(y) + 2�n[ such that F (xn) � y:
Then xn ! H(y) as n!1 and we obtain that F (H(y)) � y since F is right
continuous. Thus, remembering that F increases, F (a) � y: On the other
hand, if 0 < y < L and 0 < y � F (a); then, by the very de�nition of H(y);
H(y) � a:
We now de�ne

� = H(v1j]0;L[)

and get
�(]�1; x]) = F (x); x 2 R:

The uniqueness follows at once from Theorem 1.2.3. Note that the measure
� is a probability measure if L = 1:
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Exercises

1. Suppose F : R ! R is a right continuous increasing function. Prove that
there is a unique positive measure � on R such that

�(]a; x]) = F (x)� F (a); if a; x 2 R and a < x:

2. Suppose F : R ! R is an increasing function. Prove that the set of
all discontinuity points of F is at most denumerable. (Hint: Assume �rst
that F is bounded and prove that the set of all points x 2 R such that
F (x+)� F (x�) > " is �nite for every " > 0.)

3. Suppose � is a �-�nite positive measure on R: Prove that the set of all
x 2 R such that �(fxg) > 0 is at most denumerable.

4. Suppose � is a �-�nite positive measure on Rn: Prove that there is an at
most denumerable set of hyperplanes of the type

xk = c (k = 1; :::; n; c 2 R)

with positive �-measure.

5. Construct an increasing function f : R! R such that the set of discon-
tinuity points of f equals Q.


