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CHAPTER 4

MODES OF CONVERGENCE

Introduction

In this chapter we will treat a variety of di¤erent sorts of convergence notions
in measure theory. So called L2-convergence is of particular importance.

4.1. Convergence in Measure, in L1(�); and in L2(�)

Let (X;M; �) be a positive measure space and denote by F(X) the class of
measurable functions f : (X;M)! (R;R). For any f 2 F(X); set

k f k1=
Z
X

j f(x) j d�(x)

and

k f k2=

sZ
X

f 2(x)d�(x):

The Cauchy-Schwarz inequality states thatZ
X

j fg j d� �k f k2k g k2 if f; g 2 F(X):

To prove this, without loss of generality, it can be assumed that

0 <k f k2<1 and 0 <k g k2<1:

We now use the inequality

�� � 1

2
(�2 + �2); �; � 2 R
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to obtain Z
X

j f j
k f k2

j g j
k g k2

d� �
Z
1

2
(
f 2

k f k22
+

g2

k g k22
)d� = 1

and the Cauchy-Schwarz inequality is immediate.
If not otherwise stated, in this section p is a number equal to 1 or 2: If it

is important to emphasize the underlying measure k f kp is written k f kp;� :
We now de�ne

Lp(�) = ff 2 F(X); k f kp<1g :

The special case p = 1 has been introduced earlier. We claim that the
following so called triangle inequality holds, viz.

k f + g kp�k f kp + k g kp if f; g 2 Lp(�):

The case p = 1; follows by �-integration of the relation

j f + g j�j f j + j g j :

To prove the case p = 2; we use the Cauchy-Schwarz inequality and have

k f + g k22�kj f j + j g jk22

=k f k22 +2
Z
X

j fg j d�+ k g k22

�k f k22 +2 k f k2k g k2 + k g k22= (k f k2 + k g k2)2

and the triangle inequality is immediate.
Suppose f; g 2 Lp(�): The functions f and g are equal almost everywhere

with respect to � if ff 6= gg 2 Z�: This is easily seen to be an equivalence
relation and the set of all equivalence classes is denoted by Lp(�): Below
we consider the elements of Lp(�) as members of Lp(�) and two members
of Lp(�) are identi�ed if they are equal a.e. [�] : From this convention it is
straight-forward to de�ne f + g and �f for all f; g 2 Lp(�) and � 2 R and
the function d(p)(f; g) =k f � g kp is a metric on Lp(�): Convergence in the
metric space Lp(�) = (Lp(�),d(p)) is called convergence in Lp(�): A sequence
(fk)

1
k=1 in F(X) converges in measure to a function f 2 F(X) if

lim
k!1

�(j fk � f j> ") = 0 all " > 0:
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If the sequence (fk)1k=1 in F(X) converges in measure to a function f
2 F(X) as well as to a function g 2 F(X); then f = g a.e. [�] since

fj f � g j> "g �
n
j f � fk j>

"

2

o
[
n
j fk � g j> "

2

o
and

�(j f � g j> ") � �(j f � fk j>
"

2
) + �(j fk � g j> "

2
)

for every " > 0 and positive integer k: A sequence (fk)1k=1 in F(X) is said
to be Cauchy in measure if for every " > 0;

�(j fk � fn j> ")! 0 as k; n!1:

By the Markov inequality, a Cauchy sequence in Lp(�) is Cauchy in measure.

Example 4.1.1. (a) If fk =
p
k�[0; 1k ]

; k 2 N+; then

k fk k2;m= 1 and k fk k1;m=
1p
k
:

Thus fk ! 0 in L1(m) as k !1 but fk 9 0 in L2(m) as k !1:

(b) L1(m) * L2(m) since

�[1;1[(x)
1

j x j 2 L
2(m) n L1(m)

and L2(m) * L1(m) since

�]0;1](x)
1p
j x j

2 L1(m) n L2(m):

Theorem 4.1.1. Suppose p = 1 or 2:
(a) Convergence in Lp(�) implies convergence in measure:
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(b) If �(X) <1; then L2(�) � L1(�) and convergence in L2(�) implies
convergence in L1(�):

Proof. (a) Suppose the sequence (fn)1n=1 converges to f in L
p(�) and let

" > 0: Then, by the Markov inequality,

�(j fn � f j� ") � 1

"p

Z
X

j fn � f jp d� = 1

"p
k fn � f kpp

and (a) follows at once.

(b) The Cauchy-Schwarz inequality gives for any f 2 F(X);

(

Z
X

j f j �1d�)2 �
Z
X

f 2d�

Z
X

1d�

or
k f k1�k f k2

p
�(X)

and Part (b) is immediate.

Theorem 4.1.2. Suppose fn 2 F(X); n 2 N+:
(a) If (fn)1n=1 is Cauchy in measure, there is a measurable function f :

X ! R such that fn ! f in measure as n ! 1 and a strictly increasing
sequence of positive integers (nj)1j=1 such that fnj ! f a.e. [�] as j !1.
(b) If � is a �nite positive measure and fn ! f 2 F(X) a.e. [�] as

n!1; then fn ! f in measure.
(c) (Egoro¤�s Theorem) If � is a �nite positive measure and fn !

f 2 F(X) a.e. [�] as n!1; then for every " > 0 there exists E 2M such
that �(E) < " and

sup
k�n
x2Ec

j fk(x)� f(x) j! 0 as n!1:

PROOF. (a) For each positive integer j; there is a positive integer nj such
that

�(j fk � fl j> 2�j) < 2�j; all k; l � nj:
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There is no loss of generality to assume that n1 < n2 < ::: : Set

Ej =
�
j fnj � fnj+1 j> 2�j

	
and

Fk = [1j=kEj:
If x 2 F ck and i � j � k

j fni(x)� fnj(x) j�
X
j�l<i

j fnl+1(x)� fnl(x) j

�
X
j�l<i

2�l < 2�j+1

and we conclude that (fnj(x))
1
j=1 is a Cauchy sequence for every x 2 F ck : Let

G = [1k=1F ck and note that for every �xed positive integer k;

�(Gc) � �(Fk) <
1X
j=k

2�j = 2�k+1:

Thus Gc is a �-null set. We now de�ne f(x) = limj!1 fnj(x) if x 2 G and
f(x) = 0 if x =2 G:
We next prove that the sequence (fn)1n=1 converges to f in measure. If

x 2 F ck and j � k we get

j f(x)� fnj(x) j� 2�j+1:

Thus, if j � k
�(j f � fnj j> 2�j+1) � �(Fk) < 2

�k+1:

Since

�(j fn � f j> ") � �(j fn � fnj j>
"

2
) + �(j fnj � f j> "

2
)

if " > 0; Part (a) follows at once.

(b) For each " > 0;

�(j fn � f j> ") =

Z
X

�]";1[(j fn � f j)d�
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and Part (c) follows from the Lebesgue Dominated Convergence Theorem.

(c) Set for �xed k; n 2 N+;

Ekn = [1j=n
�
j fj � f j> 1

k

�
:

We have
\1n=1Ekn 2 Z�

and since � is a �nite measure

�(Ekn)! 0 as n!1:

Given " > 0 pick nk 2 N+ such that �(Eknk) < "2�k: Then, if E = [1k=1Eknk ,
�(E) < ". Moreover, if x =2 E and j � nk

j fj(x)� f(x) j� 1

k
:

The theorem is proved.

Corollary 4.1.1. The spaces L1(�) and L2(�) are complete.

PROOF. Suppose p = 1 or 2 and let (fn)1n=1 be a Cauchy sequence in L
p(�):

We know from the previous theorem that there exists a subsequence (fnj)
1
j=1

which converges pointwise to a function f 2 F(X) a.e. [�] : Thus, by Fatou�s
Lemma, Z

X

j f � fk jp d� � lim inf
j!1

Z
X

j fnj � fk jp d�

and it follows that f � fk 2 Lp(�) and, hence f = (f � fk) + fk 2 Lp(�):
Moreover, we have that k f � fk kp! 0 as k !1: This concludes the proof
of the theorem.

Corollary 4.1.2. Suppose �n 2 N(0; �2n); n 2 N+; and �n ! � in L2(P ) as
n!1: Then � is a centred Gaussian random variable.
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PROOF. We have that k �n k2=
q
E
�
�2n
�
= �n and k �n k2!k � k2=def �

as n!1:
Suppose f is a bounded continuous function on R. Then, by dominated

convergence,

E [f(�n)] =

Z
R

f(�nx)d1(x)!
Z
R

f(�x)d1(x)

as n ! 1. Moreover, there exists a subsequence (�nk)
1
k=1 which converges

to � a.s. Hence, by dominated convergence

E
�
f(�nk)

�
! E [f(�)]

as k !1 and it follows that

E [f(�)] =

Z
R

f(�x)d1(x):

By using Corollary 3.1.3 the theorem follows at once.

Theorem 4.1.3. Suppose X is a standard space and � a positive �-�nite
Borel measure on X. Then the spaces L1(�) and L2(�) are separable.

PROOF. Let (Ek)1k=1 be a denumerable collection of Borel sets with �nite
�-measures and such that Ek � Ek+1 and [1k=1Ek = X: Set �k = �Ek� and
�rst suppose that the set Dk is at most denumerable and dense in Lp(�k)
for every k 2 N+: Without loss of generality it can be assumed that each
member of Dk vanishes o¤ Ek: By monotone convergenceZ

X

fd� = lim
k!1

Z
X

fd�k, f � 0 measurable,

and it follows that the set [1k=1Dk is at most denumerable and dense in Lp(�):
From now on we can assume that � is a �nite positive measure. Let A

be an at most denumerable dense subset of X and and suppose the subset
frn; n 2 N+; g of ]0;1[ is dense in ]0;1[ : Furthermore, denote by U the
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class of all open sets which are �nite unions of open balls of the type B(a; rn);
a 2 A; n 2 N+. If U is any open subset of X

U = [ [V : V � U and V 2 U ]

and, hence, by the Ulam Theorem

�(U) = sup f�(V ); V 2 U and V � Ug :

Let K be the class of all functions which are �nite sums of functions of
the type ��U ; where � is a positive rational number and U 2 U . It follows
that K is at most denumerable.
Suppose " > 0 and that f 2 Lp(�) is non-negative. There exists a

sequence of simple measurable functions ('i)
1
i=1 such that

0 � 'i " f a.e. [�] :

Since j f �'i jp� fp; the Lebesgue Dominated Convergence Theorem shows
that k f � 'k kp< "

2
for an appropriate k: Let �1; :::; �l be the distinct

positive values of 'k and set

C = 1 + �lk=1�k:

Now for each �xed j 2 f1; :::; lg we use Theorem 3.1.3 to get an open
Uj � '�1k (f�jg) such that k �Uj � �'�1k (f�jg) kp<

"
4C
and from the above we

get a Vj 2 U such that Vj � Uj and k �Uj � �Vj kp<
"
4C
: Thus

k �Vj � �'�1k (f�jg) kp<
"

2C

and
k f � �lk=1�j�Vj kp< "

Now it is simple to �nd a  2 K such that k f �  kp< ": From this we
deduce that the set

K �K = fg � h; g; h 2 Kg

is at most denumerable and dense in Lp(�):
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The set of all real-valued and in�nitely many times di¤erentiable functions
de�ned on Rn is denoted by C(1)(Rn) and

C(1)c (Rn) =
�
f 2 C(1)(Rn); suppf compact

	
:

Recall that the support suppf of a real-valued continuous function f de�ned
on Rn is the closure of the set of all x where f(x) 6= 0: If

f(x) =
nY
k=1

f'(1 + xk)'(1� xk)g ; x = (x1; :::; xn) 2 Rn

where '(t) = exp(�t�1); if t > 0; and '(t) = 0; if t � 0; then f 2 C1c (Rn) .
The proof of the previous theorem also gives Part (a) of the following

Theorem 4.1.4. Suppose � is a positive Borel measure in Rn such that
�(K) <1 for every compact subset K of Rn: The following sets are dense
in L1(�); and L2(�) :
(a) the linear span of the functions

�I ; I open bounded n-cell in R
n;

(b) C(1)c (Rn):

PROOF. a) The proof is almost the same as the proof of Theorem 4.1.3.
First the Ek:s can be chosen to be open balls with their centres at the origin
since each bounded set in Rn has �nite �-measure. Moreover, as in the proof
of Theorem 4.1.3 we can assume that � is a �nite measure. Now let A be an
at most denumerable dense subset of Rn and for each a 2 A let

R(a) = fr > 0; �(fx 2 X; j xk � ak j= rg) > 0 for some k = 1; :::; ng :

Then [a2AR(a) is at most denumerable and there is a subset frn; n 2 N+g
of ]0;1[ n [a2AR(a) which is dense in ]0;1[ : Finally, let U denote the class
of all open sets which are �nite unions of open balls of the type B(a; rn);
a 2 A; n 2 N+; and proceed as in the proof of Theorem 4.1.3. The result
follows by observing that the characteristic function of any member of U
equals a �nite sum of characteristic functions of open bounded n-cells a.e.
[�] :
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Part (b) in Theorem 4.1.4 follows from Part (a) and the following

Lemma 4.1.1. Suppose K � U � Rn, where K is compact and U is open.
Then there exists a function f 2 C(1)c (Rn) such that

K � f � U

that is
�K � f � �U and suppf � U:

PROOF. Suppose � 2 C1c (Rn) is non-negative, supp � � B(0; 1); andZ
Rn

�dmn = 1:

Moreover, let " > 0 be �xed. For any g 2 L1(vn) we de�ne

f"(x) = "�n
Z
Rn

g(y)�("�1(x� y))dy:

Since

j g j max
Rn

j @
k1+:::+kn�

@xk11 :::@x
kn
n

j2 L1(vn); all k1; :::; kn 2 N

the Lebesgue Dominated Convergent Theorem shows that f" 2 C1(Rn):
Here f" 2 C1c (Rn) if g vanishes o¤ a bounded subset of Rn: In fact,

supp f" � (supp g)":

Now choose a positive number " � 1
2
d(K;U c) and de�ne g = �K"

: Since

f"(x) =

Z
Rn

g(x� "y)�(y)dy

we also have that f"(x) = 1 if x 2 K: The lemma is proved.
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Example 4.1.2. Suppose f 2 L1(mn) and let g : Rn ! R be a bounded
Lebesgue measurable function. Set

h(x) =

Z
Rn

f(x� y)g(y)dy; x 2 Rn:

We claim that h is continuous.
To see this �rst note that

h(x+�x)� h(x) =

Z
Rn

(f(x+�x� y)� f(x� y))g(y)dy

and

j h(x+�x)� h(x) j� K

Z
Rn

j f(x+�x� y)� f(x� y) j dy

= K

Z
Rn

j f(�x+ y)� f(y) j dy

if j g(x) j� K for every x 2 Rn: Now �rst choose " > 0 and then ' 2 Cc(Rn)
such that

k f � ' k1< ":

Using the triangle inequality, we get

j h(x+�x)� h(x) j� K(2 k f � ' k1 +
Z
Rn

j '(�x+ y)� '(y) j dy)

� K(2"+

Z
Rn

j '(�x+ y)� '(y) j dy)

where the right hand side is smaller than 3K" if j �x j is su¢ ciently small.
This proves that h is continuous.

Example 4.1.3. Suppose A 2 R�
n and mn(A) > 0: We claim that the set

A� A = fx� x;x 2 Ag

contains a neighbourhood of the origin.
To show this there is no loss of generality to assume that mn(A) < 1:

Set
f(x) = mn(A \ (A+ x)); x 2 Rn:
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Note that

f(x) =

Z
Rn

�A(y)�A(y � x)dy

and Example 4.1.2 proves that f is continuous. Since f(0) > 0 there exists a
� > 0 such that f(x) > 0 if j x j< �: In particular, A\ (A+x) 6= � if j x j< �;
which proves that

B(0; �) � A� A:

The following three examples are based on the Axiom of Choice.

Example 4.1.4. Let NL be the non-Lebesgue measurable set constructed
in Section 1.3. Furthermore, assume A � R is Lebesgue measurable and
A � NL: We claim that m(A) = 0: If not, there exists a � > 0 such that
B(0; �) � A�A � NL�NL: If 0 < r < � and r 2 Q, there exist a; b 2 NL
such that

a = b+ r:

But then a 6= b and at the same time a and b belong to the same equivalence
class, which is a contradiction. Accordingly from this, m(A) = 0:

Example 4.1.5. Suppose A �
�
�1
2
; 1
2

�
is Lebesgue measurable and m(A) >

0: We claim there exists a non-Lebesgue measurable subset of A: To see this
note that

A = [1i=1((ri +NL) \ A)
where (ri)1i=1 is an enumeration of the rational numbers in the interval [�1; 1] :
If each set (ri +NL) \ A; is Lebesgue measurable

m(A) = �1i=1m((ri +NL) \ A)

and we conclude that m((ri +NL) \ A) > 0 for an appropriate i: But then
m(NL\ (A� ri)) > 0 and NL\ (A� ri) � NL; which contradicts Example
4.1.4. Hence (ri+NL)\A is non-Lebesgue measurable for an appropriate i:
If A is a Lebesgue measurable subset of the real line of positive Lebesgue

measure, we conclude that A contains a non-Lebesgue measurable subset.
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Example 4.1.6. Set I = [0; 1] : We claim there exist a continuous function
f : I ! I and a Lebesgue measurable set L � I such that f�1(L) is not
Lebesgue measurable.
First recall from Section 3.3 the construction of the Cantor set C and the

Cantor function G. First C0 = [0; 1]. Then trisect C0 and remove the middle
interval

�
1
3
; 2
3

�
to obtain C1 = C0 n

�
1
3
; 2
3

�
=
�
0; 1

3

�
[
�
2
3
; 1
�
: At the second

stage subdivide each of the closed intervals of C1 into thirds and remove
from each one the middle open thirds. Then C2 = C1 n (

�
1
9
; 2
9

�
[
�
7
9
; 8
9

�
): We

repeat the process and what is left from Cn�1 is Cn. The set [0; 1] nCn is the
union of 2n �1 intervals numbered Ink ; k = 1; :::; 2n�1; where the interval Ink
is situated to the left of the interval Inl if k < l: The Cantor set C = \1n=1Cn:
Suppose n is �xed and let Gn : [0; 1]! [0; 1] be the unique the monotone

increasing continuous function, which satis�esGn(0) = 0; Gn(1) = 1; Gn(x) =
k2�n for x 2 Ink and which is linear on each interval of Cn: It is clear that
Gn = Gn+1 on each interval Ink , k = 1; :::; 2n � 1: The Cantor function is
de�ned by the limit G(x) = limn!1Gn(x); 0 � x � 1:
Now de�ne

h(x) =
1

2
(x+G(x)); x 2 I

where G is the Cantor function. Since h : I ! I is a strictly increasing and
continuous bijection, the inverse function f = h�1 is a continuous bijection
from I onto I: Set

A = h(I n C)

and
B = h(C):

Recall from the de�nition of G that G is constant on each removed interval
Ink and that h takes each removed interval onto an interval of half its length.
Thus m(A) = 1

2
and m(B) = 1�m(A) = 1

2
:

By the previous example there exists a non-Lebesgue measurable subset
M of B: Put L = h�1(M): The set L is Lebesgue measurable since L � C
and C is a Lebesgue null set. However, the set M = f�1(L) is not Lebesgue
measurable.

Exercises
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1. Let (X;M; �) be a �nite positive measure space and suppose '(t) =
min(t; 1); t � 0: Prove that fn ! f in measure if and only if '(j fn�f j)! 0
in L1(�):

2. Let � = mj[0;1]: Find measurable functions fn : [0; 1] ! [0; 1] ; n 2 N+;
such that fn ! 0 in L2(�) as n!1;

lim inf
n!1

fn(x) = 0 all x 2 [0; 1]

and
lim sup
n!1

fn(x) = 1 all x 2 [0; 1] :

3. If f 2 F(X) set

k f k0= inf f� 2 [0;1] ; �(j f j> �) � �g :

Let
L0(�) = ff 2 F(X); k f k0<1g

and identify functions in L0(�) which agree a.e. [�] :
(a) Prove that d(0) =k f � g k0 is a metric on L0(�) and that the corre-

sponding metric space is complete.

(b) Show that F(X) = L0(�) if � is a �nite positive measure.

4. Suppose Lp(X;M; �) is separable, where p = 1 or 2: Show that Lp(X;M�; ��)
is separable.

5. Suppose g is a real-valued, Lebesgue measurable, and bounded function
of period one. Prove that

lim
n!1

Z 1

�1
f(x)g(nx)dx =

Z 1

�1
f(x)dx

Z 1

0

g(x)dx
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for every f 2 L1(m):

6. Let hn(t) = 2 + sinnt; 0 � t � 1; and n 2 N+: Find real constants � and
� such that

lim
n!1

Z 1

0

f(t)hn(t)dt = �

Z 1

0

f(t)dt

and

lim
n!1

Z 1

0

f(t)

hn(t)
dt = �

Z 1

0

f(t)dt

for every real-valued Lebesgue integrable function f on [0; 1] :

7. If k = (k1; :::; kn) 2 Nn
+; set ek(x) = �

n
i=1 sin kixi; x = (x1; :::; xn) 2 Rn;

and j k j= (�ni=1k2i )
1
2 : Prove that

lim
jkj!1

Z
Rn

fekdmn = 0

for every f 2 L1(mn):

8. Suppose f 2 L1(mn); where mn denotes Lebesgue measure on Rn. Com-
pute the following limit and justify the calculations:

lim
jhj!1

Z
Rn

j f(x+ h)� f(x) j dx:

4.2 Orthogonality

Suppose (X;M; �) is a positive measure space. If f; g 2 L2(�); let

hf; gi =def
Z
X

fgd�

be the so called scalar product of f and g: The Cauchy-Schwarz inequality

j hf; gi j�k f k2k g k2
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shows that the map f ! hf; gi of L2(�) into R is continuous. Observe that

k f + g k22=k f k22 +2hf; gi+ k g k22
and from this we get the so called Parallelogram Law

k f + g k22 + k f � g k22= 2(k f k22 + k g k22):

We will say that f and g are orthogonal (abbr. f ? g) if hf; gi = 0: Note
that

k f + g k22=k f k22 + k g k22 if and only if f ? g:

Since f ? g implies g ? f; the relation ? is symmetric. Moreover, if
f ? h and g ? h then (�f + �g) ? h for all �; � 2R. Thus h? =def
ff 2 L2(�); f ? hg is a subspace of L2(�); which is closed since the map
f ! hf; hi; f 2 L2(�) is continuous. If M is a subspace of L2(�); the set

M? =def \h2Mh?

is a closed subspace of L2(�): The function f = 0 if and only if f ? f:
If M is a subspace of L2(�) and f 2 L2(�) there exists at most one point

g 2 M such that f � g 2 M?: To see this, let g0; g1 2 M be such that
f � gk 2M?; k = 0; 1: Then g1 � g0 = (f � g0)� (f � g1) 2M? and hence
g1 � g0 ? g1 � g0 that is g0 = g1:

Theorem 4.2.1. Let M be a closed subspace in L2(�) and suppose f 2
L2(�): Then there exists a unique point g 2M such that

k f � g k2�k f � h k2 all h 2M:

Moreover,
f � g 2M?:

The function g in Theorem 4.2.1 is called the projection of f on M and
is denoted by ProjM f:

PROOF OF THEOREM 4.2.1. Set

d =def d
(2)(f;M) = inf

g2M
k f � g k2 :
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and let (gn)1n=1 be a sequence in M such that

d = lim
n!1

k f � gn k2 :

Then, by the Parallelogram Law

k (f�gk)+(f�gn) k22 + k (f�gk)�(f�gn) k22= 2(k f�gk k22 + k f�gn k22)

that is

4 k f � 1
2
(gk + gn) k22 + k gn � gk k22= 2(k f � gk k22 + k f � gn k22)

and, since 1
2
(gk + gn) 2M; we get

4d2+ k gn � gk k22� 2(k f � gk k22 + k f � gn k22):

Here the right hand converges to 4d2 as k and n go to in�nity and we conclude
that (gn)1n=1 is a Cauchy sequence. Since L

2(�) is complete and M closed
there exists a g 2M such that gn ! g as n!1: Moreover,

d =k f � g k2 :

We claim that f � g 2 M?: To prove this choose h 2 M and � > 0
arbitrarily and use the inequality

k (f � g) + �h k22�k f � g k22

to obtain
k f � g k22 +2�hf � g; hi+ �2 k h k22�k f � g k22

and
2hf � g; hi+ � k h k22� 0:

By letting �! 0; hf � g; hi � 0 and replacing h by �h; hf � g; hi � 0: Thus
f � g 2 h? and it follows that f � g 2M?:
The uniqueness in Theorem 4.2.1 follows from the remark just before the

formulation of Theorem 4.2.1. The theorem is proved.

A linear mapping T : L2(�) ! R is called a linear functional on L2(�):
If h 2 L2(�); the map h ! hf; hi of L2(�) into R is a continuous linear
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functional on L2(�): It is a very important fact that every continuous linear
functional on L2(�) is of this type.

Theorem 4.2.2. Suppose T is a continuous linear functional on L2(�):
Then there exists a unique w 2 L2(�) such that

Tf = hf; wi all f 2 L2(�):

PROOF. Uniqueness: If w;w0 2 L2(�) and hf; wi= hf; w0i for all f 2 L2(�);
then hf; w�w0i = 0 for all f 2 L2(�): By choosing f = w�w0 we get f ? f
that is w = w0:

Existence: The set M =def T�1(f0g) is closed since T is continuous and
M is a linear subspace of L2(�) since T is linear. If M = L2(�) we choose
w = 0: Otherwise, pick a g 2 L2(�) nM:Without loss of generality it can be
assumed that Tg = 1 by eventually multiplying g by a scalar. The previous
theorem gives us a vector h 2 M such that u =def g � h 2 M?: Note that
0 <k u k22= hu; g � hi = hu; gi:
To conclude the proof, let �xed f 2 L2(�) be �xed; and use that (Tf)g�

f 2M to obtain
h(Tf)g � f; ui = 0

or
(Tf)hg; ui = hf; ui:

By setting

w =
1

k u k22
u

we are done.

###

4.3. The Haar Basis and Wiener Measure
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In this section we will show the existence of Brownian motion with continu-
ous paths as a consequence of the existence of linear measure � in the unit
interval. The so called Wiener measure is the probability law on C [0; 1] of
real-valued Brownian motion in the time interval [0; 1] : The Brownian mo-
tion process is named after the British botanist Robert Brown (1773-1858).
It was suggested by Lous Bachelier in 1900 as a model of stock price �uctua-
tions and later by Albert Einstein in 1905 as a model of the physical phenom-
enon Brownian motion. The existence of the mathematical Brownian motion
process was �rst established by Norbert Wiener in the twenties. Wiener also
proved that the model can be chosen such that the path t! W (t); 0 � t � 1;
is continuous a.s. Today Brownian motion is a very important concept in
probability, �nancial mathematics, partial di¤erential equations and in many
other �elds in pure and applied mathematics.
Suppose n is a non-negative integer and set In = f0; :::; ng : A sequence

(ei)i2In in L
2(�) is said to be orthonormal if ei ? ej for all i 6= j; i; j 2 In

and k ei k= 1 for each i 2 In: If (ei)i2In is orthonormal and f 2 L2(�);

f � �i2Inhf; eiiei ? ej all j 2 I

and Theorem 4.2.1 shows that

k f � �i2Inhf; eiiei k2�k f � �i2In�iei k2 all real �1; :::; �n:

Moreover

k f k22=k f � �i2Inhf; eiiei k22 + k �i2Inhf; eiiei k22

and we get
�i2Inhf; eii2 �k f k22 :

We say that (en)n2In is an orthonormal basis in L
2(�) if it is orthonormal

and
f = �i2Inhf; eiiei all f 2 L2(�):

A sequence (ei)1i=0 in L
2(�) is said to be orthonormal if (ei)ni=0 is ortho-

normal for each non-negative integer n: In this case, for each f 2 L2(�);

�1i=0hf; eii2 �k f k22

and the series
�1i=0hf; eiiei
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converges since the sequence

(�ni=0hf; eiiei)1n=0

of partial sums is a Cauchy sequence in L2(�): We say that (ei)1i=0 is an
orthonormal basis in L2(�) if it is orthonormal and

f = �1i=0hf; eiiei for all f 2 L2(�):

Theorem 4.3.1. An orthonormal sequence (ei)1i=0 in L2(�) is a basis of
L2(�) if

(hf; eii = 0 all i 2 N)) f = 0

Proof. Let f 2 L2(�) and set

g = f � �1i=0hf; eiiei:

Then, for any j 2 N;

hg; eji = hf � �1i=0hf; eiiei; eji

= hf; eji � �1i=0hf; eiihei; eji = hf; eji � hf; eji = 0:

Thus g = 0 or
f = �1i=0hf; eiiei:

The theorem is proved.

As an example of an application of Theorem 4.3.1 we next construct an
orthonormal basis of L2(�), where � is linear measure in the unit interval.
Set

H(t) = �[0; 12 [
(t)� �[ 12 ;1]

(t); t 2 R

Moreover, de�ne h00(t) = 1; 0 � t � 1; and for each n � 1 and j = 1; :::; 2n�1,

hjn(t) = 2
n�1
2 H(2n�1t� j + 1); 0 � t � 1:
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Stated otherwise, we have for each n � 1 and j = 1; :::; 2n�1

hjn(t) =

8>>>>><>>>>>:
2
n�1
2 ; j�1

2n�1 � t <
j� 1

2

2n�1 ;

�2n�12 ; j�
1
2

2n�1 � t � j
2n�1 ;

0; elsewhere in [0; 1] :

It is simple to show that the sequence h00;hjn; j = 1; :::; 2n�1; n � 1; is
orthonormal in L2(�). We will prove that the same sequence constitute an
orthonormal basis of L2(�): Therefore, suppose f 2 L2(�) is orthogonal to
each of the functions h00;hjn; j = 1; :::; 2n�1; n � 1: Then for each n � 1 and
j = 1; :::; 2n�1 Z j� 1

2
2n�1

j�1
2n�1

fd� =

Z j

2n�1

j� 1
2

2n�1

fd�

and, hence, Z j

2n�1

j�1
2n�1

fd� =
1

2n�1

Z 1

0

fd� = 0

since Z 1

0

fd� =

Z 1

0

fh00d� = 0:

Thus Z k
2n�1

j

2n�1

fd� = 0; 1 � j � k � 2n�1

and we conclude thatZ 1

0

1[a;b]fd� =

Z b

a

fd� = 0; 0 � a � b � 1:

Accordingly from this, f = 0 and we are done.
The above basis (hk)1k=0 = (h00;h11; h12; h22; h13; h23; h33; h43; :::) of L

2(�)
is called the Haar basis.
Let 0 � t � 1 and de�ne for �xed k 2 N

ak(t) =

Z 1

0

�[0;t](x)hk(x)dx =

Z t

0

hkd�
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so that
�[0;t] = �

1
k=0ak(t)hk in L

2(�):

Then, if 0 � s; t � 1;

min(s; t) =

Z 1

0

�[0;s](x)�[0;t](x)dx = h�1k=1ak(s)hk; �[0;t]i

= �1k=0ak(s)hhk; �[0;t]i = �1k=0ak(s)ak(t):
Note that

t = �1k=0a
2
k(t):

If (Gk)1k=0 is a sequence of N(0; 1) distributed random variables based on
a probability space (
;F ; P ) the series

�1k=0ak(t)Gk

converges in L2(P ) and de�nes a Gaussian random variable which we denote
by W (t): From the above it follows that (W (t))0�t�1 is a real-valued centred
Gaussian stochastic process with the covariance

E [W (s)W (t)] = min(s; t):

Such a process is called a real-valued Brownian motion in the time interval
[0; 1] :
Recall that

(h00;h11; h12; h22; h13; h23; h33; h43; :::) = (hk)
1
k=0:

We de�ne
(a00;a11; a12; a22; a13; a23; a33; a43; :::) = (ak)

1
k=0

and
(G00;G11; G12; G22; G13; G23; G33; G43; :::) = (Gk)

1
k=0:

It is important to note that for �xed n;

ajn(t) =

Z t

0

�[0;t](x)hjn(x)dx 6= 0 for at most one j:

Set
U0(t) = a00(t)G00



23

and
Un(t) = �

2n�1

j=1 ajn(t)Gjn; n 2 N+:

We know that
W (t) = �1n=0Un(t) in L

2(P )

for �xed t:
The space C [0; 1] will from now on be equipped with the metric

d(x; y) =k x� y k1

where k x k1= max0�t�1 j x(t) j : Recall that every x 2 C [0; 1] is uniformly
continuous. From this, remembering that R is separable, it follows that the
space C [0; 1] is separable. Since R is complete it is also simple to show that
the metric space C [0; 1] is complete. Finally, if xn 2 C [0; 1] ; n 2N; and

�1n=0 k xn k1<1

the series
�1n=0xn

converges since the partial sums

sn = �
n
k=0xk; k 2 N

forms a Cauchy sequence.
We now de�ne

� = f! 2 
;�1n=0 k Un k1<1g :

Here � 2 F since
k Un k1= sup

0�t�1
t2Q

j Un(t) j

for each n: Next we prove that 
 n� is a null set.
To this end let n � 1 and note that

P
�
k Un k1> 2�

n
4

�
� P

�
max

1�j�2n�1
(k ajn k1j Gjn j) > 2�

n
4

�
:

But
k ajn k1=

1

2
n+1
2
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and, hence,

P
�
k Un k1> 2�

n
4

�
� 2n�1P

h
j G00 j> 2

n
4
+ 1
2

i
:

Since

x � 1) P [j G00 j� x] � 2
Z 1

x

ye�y
2=2 dy

x
p
2�
� e�x

2=2

we get
P
�
k Un k1> 2�

n
4

�
� 2ne�2n=2

and conclude that

E

" 1X
n=0

1[kUnk1>2�
n
4 ]

#
=

1X
n=0

P
�
k Un k1> 2�

n
4

�
<1:

From this and the Beppo Levi Theorem (or the �rst Borel-Cantelli Lemma)
P [�] = 1:
The trajectory t ! W (t; !); 0 � t � 1; is continuous for every ! 2 �:

Without loss of generality, from now on we can therefore assume that all
trajectories of Brownian motion are continuous (by eventually replacing 

by �):
Suppose

0 � t1 < ::: < tn � 1

and let I1; :::; In be open subintervals of the real line. The set

S(t1; :::; tn; I1; :::; In) = fx 2 C [0; 1] ; x(tk) 2 Ik; k = 1; :::; ng

is called an open n-cell in C [0; 1] : A set in C [0; T ] is called an open cell if
there exists an n 2 N+ such that it is an open n-cell. The �-algebra generated
by all open cells in C [0; 1] is denoted by C: The construction above shows
that the map

W : 
! C [0; 1]

which maps ! to the trajectory

t! W (t; !); 0 � t � 1

is (F ; C)-measurable. The image measure PW is called Wiener measure in
C [0; 1] :
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The Wiener measure is a Borel measure on the metric space C [0; 1] : We
leave it as an excersice to prove that

C = B(C [0; 1]):

"""


