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CHAPTER 5

DECOMPOSITION OF MEASURES

Introduction

In this section a version of the fundamental theorem of calculus for Lebesgue
integrals will be proved. Moreover, the concept of di¤erentiating a measure
with respect to another measure will be developped. A very important result
in this chapter is the so called Radon-Nikodym Theorem.

5:1: Complex Measures

Let (X;M) be a measurable space. Recall that if An � X; n 2 N+, and
Ai \Aj = � if i 6= j, the sequence (An)n2N+ is called a disjoint denumerable
collection. The collection is called a measurable partition of A if A = [1n=1An
and An 2M for every n 2 N+:
A complex function � onM is called a complex measure if

�(A) = �1n=1�(An)

for every A 2M and measurable partition (An)1n=1 of A: Note that �(�) = 0
if � is a complex measure. A complex measure is said to be a real measure
if it is a real function. The reader should note that a positive measure need
not be a real measure since in�nity is not a real number. If � is a complex
measure � = �Re+ i�Im , where �Re =Re � and �Im =Im � are real measures.
If (X;M; �) is a positive measure and f 2 L1(�) it follows that

�(A) =

Z
A

fd�; A 2M

is a real measure and we write d� = fd�.
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A function � :M! [�1;1] is called a signed measure measure if

(a) � :M! ]�1;1] or � :M! [�1;1[
(b) �(�) = 0
and
(c) for every A 2M and measurable partition (An)1n=1 of A;

�(A) = �1n=1�(An)

where the latter sum converges absolutely if �(A) 2 R:

Here �1 � 1 = �1 and �1 + x = �1 if x 2 R: The sum of a
positive measure and a real measure and the di¤erence of a real measure and
a positive measure are examples of signed measures and it can be proved that
there are no other signed measures (see Folland [F ]). Below we concentrate
on positive, real, and complex measures and will not say more about signed
measures here.
Suppose � is a complex measure onM and de�ne for every A 2M

j � j (A) = sup�1n=1 j �(An) j;

where the supremum is taken over all measurable partitions (An)1n=1 of A:
Note that j � j (�) = 0 and

j � j (A) �j �(B) j if A;B 2M and A � B:

The set function j � j is called the total variation of � or the total variation
measure of �: It turns out that j � j is a positive measure. In fact, as will
shortly be seen, j � j is a �nite positive measure.

Theorem 5.1.1. The total variation j � j of a complex measure is a positive
measure.

PROOF. Let (An)1n=1 be a measurable partition of A:



3

For each n; suppose an <j � j (An) and let (Ekn)1k=1 be a measurable
partition of An such that

an < �
1
k=1 j �(Ekn) j :

Since (Ekn)1k;n=1 is a partition of A it follows that

�1n=1an < �
1
k;n=1 j �(Ekn) j�j � j (A):

Thus
�1n=1 j � j (An) �j � j (A):

To prove the opposite inequality, let (Ek)1k=1 be a measurable partition of
A: Then, since (An\Ek)1n=1 is a measurable partition of Ek and (An\Ek)1k=1
a measurable partition of An;

�1k=1 j �(Ek) j= �1k=1 j �1n=1�(An \ Ek) j

� �1k;n=1 j �(An \ Ek) j� �1n=1 j � j (An)

and we get
j � j (A) � �1n=1 j � j (An):

Thus
j � j (A) = �1n=1 j � j (An):

Since j � j (�) = 0, the theorem is proved.

Theorem 5.1.2. The total variation j � j of a complex measure � is a �nite
positive measure.

PROOF. Since
j � j�j �Re j + j �Im j

there is no loss of generality to assume that � is a real measure.
Suppose j � j (E) =1 for some E 2M: We �rst prove that there exist

disjoint sets A;B 2M such that

A [B = E



4

and
j �(A) j> 1 and j � j (B) =1:

To this end let c = 2(1+ j �(E) j) and let (Ek)1k=1 be a measurable partition
of E such that

�nk=1 j �(Ek) j> c
for some su¢ ciently large n: There exists a subset N of f1; :::; ng such that

j �k2N�(Ek) j>
c

2
:

Set A = [k2NEk and B = E n A: Then j �(A) j> c
2
� 1 and

j �(B) j=j �(E)� �(A) j

�j �(A) j � j �(E) j> c

2
� j �(E) j= 1:

Since 1 =j � j (E) =j � j (A)+ j � j (B) we have j � j (A) = 1 or
j � j (B) = 1: If j � j (B) < 1 we interchange A and B and have
j �(A) j> 1 and j � j (B) =1:
Suppose j � j (X) =1: Set E0 = X and choose disjoint sets A0; B0 2M

such that
A0 [B0 = E0

and
j �(A0) j> 1 and j � j (B0) =1:

Set E1 = B0 and choose disjoint sets A1; B1 2M such that

A1 [B1 = E1

and
j �(A1) j> 1 and j � j (B1) =1:

By induction, we �nd a measurable partition (An)1n=0 of the set A =def
[1n=0An such that j �(An) j> 1 for every n: Now, since � is a complex
measure,

�(A) = �1n=0�(An):

But this series cannot converge, since the general term does not tend to zero
as n!1: This contradiction shows that j � j is a �nite positive measure.
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If � is a real measure we de�ne

�+ =
1

2
(j � j +�)

and

�� =
1

2
(j � j ��):

The measures �+ and �� are �nite positive measures and are called the
positive and negative variations of �; respectively . The representation

� = �+ � ��

is called the Jordan decomposition of �:

Exercises

1. Suppose (X;M; �) is a positive measure space and d� = fd�; where
f 2 L1(�): Prove that d j � j=j f j d�:

2. Suppose �; �; and � are real measures de�ned on the same �-algebra and
� � � and � � �: Prove that

� � min(�; �)

where
min(�; �) =

1

2
(�+ �� j �� � j):

3. Suppose � :M! C is a complex measure and f; g : X ! R measurable
functions. Show that

j �(f 2 A)� �(g 2 A) j�j � j (f 6= g)

for every A 2 R:
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5.2. The Lebesque Decomposition and the Radon-Nikodym Theo-
rem

Let � be a positive measure on M and � a positive or complex measure
onM: The measure � is said to be absolutely continuous with respect to �
(abbreviated � << �) if �(A) = 0 for every A 2 M for which �(A) = 0: If
we de�ne

Z� = fA 2M; �(A) = 0g

it follows that � << � if and only if

Z� � Z�:

For example, n << vn and vn << n:
The measure � is said to be concentrated on E 2 M if � = �E , where

�E(A) =def �(E \ A) for every A 2 M: This is equivalent to the hypoth-
esis that A 2 Z� if A 2 M and A \ E = �: Thus if E1; E2 2 M, where
E1 � E2; and � is concentrated on E1; then � is concentrated on E2: More-
over, if E1; E2 2 M and � is concentrated on both E1 and E2; then � is
concentrated on E1 \ E2: Two measures �1 and �2 are said to be mutually
singular (abbreviated �1 ? �2) if there exist disjoint measurable sets E1 and
E2 such that �1 is concentrated on E1 and �2 is concentrated on E2:

Theorem 5.2.1. Let � be a positive measure and �; �1; and �2 complex
measures.
(i) If �1 << � and �2 << �; then (�1�1 + �2�2) << � for all complex

numbers �1 and �2:
(ii) If �1 ? � and �2 ? �; then (�1�1 + �2�2) ? � for all complex

numbers �1 and �2:
(iii) If � << � and � ? �; then � = 0:
(iv) If � << �; then j � j<< �:

PROOF. The properties (i) and (ii) are simple to prove and are left as exer-
cises.
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To prove (iii) suppose E 2 M is a �-null set and � = �E: If A 2 M, then
�(A) = �(A \ E) and A \ E is a �-null set. Since � << � it follows that
A \ E 2 Z� and, hence, �(A) = �(A \ E) = 0: This proves (iii)
To prove (iv) suppose A 2 M and �(A) = 0: If (An)1n=1 is measurable

partition of A; then �(An) = 0 for every n: Since � << �; �(An) = 0 for
every n and we conclude that j � j (A) = 0: This proves (vi).

Theorem 5.2.2. Let � be a positive measure onM and � a complex measure
on M: Then the following conditions are equivalent:
(a) � << �:
(b) To every " > 0 there corresponds a � > 0 such that j �(E) j< " for

all E 2M with �(E) < �:

If � is a positive measure, the implication (a)) (b) in Theorem 5.2.2 is,
in general, wrong. To see this take � = 1 and � = v1: Then � << � and if
we choose An = [n;1[ ; n 2 N+; then �(An)! 0 as n!1 but �(An) =1
for each n:

PROOF. (a))(b). If (b) is wrong there exist an " > 0 and sets En 2 M,
n 2 N+; such that j �(En) j� " and �(En) < 2�n: Set

An = [1k=nEk and A = \1n=1An:

Since An � An+1 � A and �(An) < 2�n+1, it follows that �(A) = 0 and
using that j � j (An) �j �(En) j; Theorem 1.1.2 (f) implies that

j � j (A) = lim
n!1

j � j (An) � ":

This contradicts that j � j<< �:

(b))(a). If E 2 M and �(E) = 0 then to each " > 0; j �(E) j< "; and we
conclude that �(E) = 0: The theorem is proved:
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Theorem 5.2.3. Let � be a �-�nite positive measure and � a real measure
on M.
(a) (The Lebesgue Decomposition of �) There exists a unique pair

of real measures �a and �s onM such that

� = �a + �s; �a << �; and �s ? �:

If � is a �nite positive measure, �a and �s are �nite positive measures.
(b) (The Radon-Nikodym Theorem) There exits a unique g 2 L1(�)

such that
d�a = gd�:

If � is a �nite positive measure, g � 0 a.e. [�] :

The proof of Theorem 5.2.3 is based on the following

Lemma 5.2.1. Let (X;M; �) be a �nite positive measure space and suppose
f 2 L1(�):
(a) If a 2 R and Z

E

fd� � a�(E); all E 2M

then f � a a.e. [�].
(b) If b 2 R and Z

E

fd� � b�(E); all E 2M

then f � b a.e. [�].

PROOF. (a) Set g = f � a so thatZ
E

gd� � 0; all E 2M:

Now choose E = fg > 0g to obtain

0 �
Z
E

gd� =

Z
X

�Egd� � 0
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as �Eg � 0 a.e. [�] : But then Example 2.1.2 yields �Eg = 0 a.e. [�] and we
get E 2 Z�: Thus g � 0 a.e. [�] or f � a a.e. [�] :

Part (b) follows in a similar way as Part (a) and the proof is omitted
here.

PROOF. Uniqueness: (a) Suppose �(k)a and �(k)s are real measures onM such
that

� = �(k)a + �(k)s ; �
(k)
a << �; and �(k)s ? �

for k = 1; 2: Then
�(1)a � �(2)a = �(2)s � �(1)s

and
�(1)a � �(2)a << � and �(1)a � �(2)a ? �:

Thus by applying Theorem 5.2.1, �(1)a � �(2)a = 0 and �(1)a = �(2)a : From this
we conclude that �(1)s = �(2)s .
(b) Suppose gk 2 L1(�); k = 1; 2; and

d�a = g1d� = g2d�:

Then hd� = 0 where h = g1 � g2: But thenZ
fh>0g

hd� = 0

and it follows that h � 0 a.e. [�] : In a similar way we prove that h � 0 a.e.
[�]. Thus h = 0 in L1(�); that is g1 = g2 in L1(�):

Existence: The beautiful proof that follows is due to von Neumann.
First suppose that � and � are �nite positive measures and set � = �+�:

Clearly, L1(�) � L1(�) � L2(�): Moreover, if f : X ! R is measurableZ
X

j f j d� �
Z
X

j f j d� �

sZ
X

f 2d�
p
�(X)

and from this we conclude that the map

f !
Z
X

fd�
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is a continuous linear functional on L2(�): Therefore, in view of Theorem
4.2.2, there exists a g 2 L2(�) such thatZ

X

fd� =

Z
X

fgd� all f 2 L2(�):

Suppose E 2M and put f = �E to obtain

0 � �(E) =
Z
E

gd�

and, since � � �;
0 �

Z
E

gd� � �(E):

But then Lemma 5.2.1 implies that 0 � g � 1 a.e. [�] : Therefore, without
loss of generality we can assume that 0 � g(x) � 1 for all x 2 X and, in
addition, as above Z

X

fd� =

Z
X

fgd� all f 2 L2(�)

that is Z
X

f(1� g)d� =
Z
X

fgd� all f 2 L2(�):

Put A = f0 � g < 1g, S = fg = 1g ; �a = �A; and �s = �S: Note that
� = �A+�S: The choice f = �S gives �(S) = 0 and hence �s ? �: Moreover,
the choice

f = (1 + :::+ gn)�E

where E 2M; givesZ
E

(1� gn+1)d� =
Z
E

(1 + :::+ gn)gd�:

By letting n!1 and using monotone convergence

�(E \ A) =
Z
E

hd�:

where
h = lim

n!1
(1 + :::+ gn)g:
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Since h is non-negative and

�(A) =

Z
X

hd�

it follows that h 2 L1(�): Moreover, the construction above shows that � =
�a + �s:
In the next step we assume that � is a �-�nite positive measure and �

a �nite positive measure. Let (Xn)
1
n=1 be a measurable partition of X such

that �(Xn) < 1 for every n: Let n be �xed and apply Part (a) to the pair
�Xn and �Xn to obtain �nite positive measures (�Xn)a and (�

Xn)s such that

�Xn = (�Xn)a + (�
Xn)s; (�

Xn)a << �
Xn ; and (�Xn)s ? �Xn

and
d(�Xn)a = hnd�

Xn (or (�Xn)a = hn�Xn)

where 0 � hn 2 L1(�Xn): Without loss of generality we can assume that
hn = 0 o¤Xn and that (�

Xn)s is concentrated on An � Xn where An 2 Z�:
In particular, (�Xn)a = hn�: Now

� = h�+ �1n=1(�
Xn)s

where
h = �1n=1hn

and Z
X

hd� � �(X) <1:

Thus h 2 L1(�): Moreover, �s =def �1n=1(�Xn)s is concentrated on [1n=1An 2
Z�: Hence �s ? �:
Finally if � is a real measure we apply what we have already proved to

the positive and negative variations of � and we are done.

Example 5.2.1. Let � be Lebesgue measure in the unit interval and � the
counting measure in the unit interval restricted to the class of all Lebesgue
measurable subsets of the unit interval. Clearly, � << �: Suppose there is an
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h 2 L1(�) such that d� = hd�. We can assume that h � 0 and the Markov
inequality implies that the set fh � "g is �nite for every " > 0: But then

�(h 2 ]0; 1]) = lim
n!1

�(h � 2�n) = 0

and it follows that 1 = �(h = 0) =
R
fh=0g hd� = 0; which is a contradiction.

Corollary 5.2.1. Suppose � is a real measure. Then there exists

h 2 L1(j � j)

such that j h(x) j= 1 for all x 2 X and

d� = hd j � j :

PROOF. Since j �(A) j�j � j (A) for every A 2 M, the Radon-Nikodym
Theorem implies that d� = hd j � j for an appropriate h 2 L1(j � j): But
then d j � j=j h j d j � j (see Exercise 1 in Chapter 5.1): Thus

j � j (E) =
Z
E

j h j d j � j; all E 2M

and Lemma 5.2.1 yields h = 1 a.e. [j � j] : From this the theorem follows at
once.

Theorem 5.2.4. (Hahn�s Decomposition Theorem) Suppose � is a
real measure. There exists an A 2M such that

�+ = �A and �� = ��Ac :

PROOF. Let d� = hd j � j where j h j= 1: Note that hd� = d j � j : Set
A = fh = 1g : Then

d�+ =
1

2
(d j � j +d�) = 1

2
(h+ 1)d� = �Ad�
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and
d�� = d�+ � d� = (�A � 1)d� = ��Acd�:

The theorem is proved.

If a real measure � is absolutely continuous with respect to a �-�nite
positive measure �, the Radon-Nikodym Theorem says that d� = fd� for an
approprite f 2 L1(�): We sometimes write

f =
d�

d�

and call f the Radon-Nikodym derivate of � with respect to �:

Exercises

1. Suppose � and �n; n 2N, are positive measures de�ned on the same
�-algebra and set � = �1n=0�n. Prove that
a) � ? � if �n ? �; all n 2 N:
b) � << � if �n << �; all n 2 N:

2. Suppose � is a real measure and � = �1 � �2; where �1 and �2 are �nite
positive measures. Prove that �1 � �+ and �2 � ��:

3. Let �1 and �2 be mutually singular complex measures on the same �-
algebra: Show that j �1 j?j �2 j :

4. Let (X;M; �) be a �-�nite positive measure space and suppose � and �
are two probability measures de�ned on the �-algebraM such that � << �
and � << �: Prove that

sup
A2M

j �(A)� �(A) j= 1

2

Z
X

j d�
d�
� d�

d�
j d�:
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5.3. The Wiener Maximal Theorem and the Lebesgue Di¤erentia-
tion Theorem

We say that a Lebesgue measurable function f in Rn is locally Lebesgue in-
tegrable and belongs to the class L1loc(mn) if f�K 2 L1(mn) for each compact
subset K of Rn: In a similar way f 2 L1loc(vn) if f is a Borel function such
that f�K 2 L1(vn) for each compact subset K of Rn: If f 2 L1loc(mn); we
de�ne the average Arf(x) of f on the open ball B(x; r) as

Arf(x) =
1

mn(B(x; r))

Z
B(x;r)

f(y)dy:

It follows from dominated convergence that the map (x; r) ! Arf(x) of
Rn � ]0;1[ into R is continuous. The Hardy-Littlewood maximal function
f � is, by de�nition, f � = supr>0Ar j f j or, stated more explicitly,

f �(x) = sup
r>0

1

mn(B(x; r))

Z
B(x;r)

j f(y) j dy; x 2 Rn:

The function f � : (Rn;B(Rn))! ([0;1] ;R0;1) is measurable since

f � = sup
r>0
r2Q

Ar j f j :

Theorem 5.3.1. (Wiener�s Maximal Theorem) There exists a positive
constant C = Cn <1 such that for all f 2 L1(mn);

mn(f
� > �) � C

�
k f k1 if � > 0:

The proof of the Wiener Maximal Theorem is based on the following
remarkable result.

Lemma 5.3.1. Let C be a collection of open balls in Rn and set V = [B2CB:
If c < mn(V ) there exist pairwise disjoint B1; :::; Bk 2 C such that

�ki=1mn(Bi) > 3
�nc:
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PROOF. LetK � V be compact withmn(K) > c; and suppose A1; :::; Ap 2 C
cover K: Let B1 be the largest of the A0is (that is, B1 has maximal radius),
let B2 be the largest of the A0is which are disjoint from B1; let B3 be the
largest of the A0is which are disjoint from B1[B2; and so on until the process
stops after k steps. If Bi = B(xi; ri) put B�i = B(xi; 3ri): Then [ki=1B�i � K
and

c < �ki=1mn(B
�
i ) = 3

n�ki=1mn(Bi):

The lemma is proved.

PROOF OF THEOREM 5.3.1. Set

E� = ff � > �g :

For each x 2 E� choose an rx > 0 such that Arx j f j (x) > �: If c < mn(E�);
by Lemma 5.3.1 there exist x1; :::; xk 2 E� such that the balls Bi = B(xi; rxi);
i = 1; :::; k; are mutually disjoint and

�ki=1mn(Bi) > 3
�nc:

But then

c < 3n�ki=1mn(Bi) <
3n

�
�ki=1

Z
Bi

j f(y) j dy � 3n

�

Z
Rn

j f(y) j dy:

The theorem is proved.

Theorem 5.3.2. If f 2 L1loc(mn);

lim
r!0

1

mn(B(x; r))

Z
B(x;r)

f(y)dy = f(x) a.e. [mn] :

PROOF. Clearly, there is no loss of generality to assume that f 2 L1(mn):
Suppose g 2 Cc(Rn) =def ff 2 C(Rn); f(x) = 0 if j x j large enoughg. Then

lim
r!0

Arg(x) = g(x) all x 2 Rn:
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Since Arf � f = Ar(f � g)� (f � g) + Arg � g;

lim
r!0

j Arf � f j� (f � g)�+ j f � g j :

Now, for �xed � > 0;
mn(lim

r!0
j Arf � f j> �)

� mn((f � g)� >
�

2
) +mn(j f � g j>

�

2
)

and the Wiener Maximal Theorem and the Markov Inequality give

mn(lim
r!0

j Arf � f j> �)

� (2C
�
+
2

�
) k f � g k1 :

Remembering that Cc(Rn) is dense in L1(mn); the theorem follows at once.

If f 2 L1loc(mn) we de�ne the so called Lebesgue set Lf to be

Lf =

�
x; lim

r!0

1

mn(B(x; r))

Z
B(x;r)

j f(y)� f(x) j dy = 0
�
:

Note that if q is real and

Eq =

�
x; lim

r!0

1

mn(B(x; r))

Z
B(x;r)

j f(y)� q j dy =j f(x)� q j
�

then mn([q2QEcq) = 0: If x 2 \q2QEq;

lim
r!0

1

mn(B(x; r))

Z
B(x;r)

j f(y)� f(x) j dy � 2 j f(x)� q j

for all rational numbers q and it follows that mn(L
c
f ) = 0:

A family Ex;� = (Ex;r)r>0 of Borel sets in Rn is said to shrink nicely to a
point x in Rn if Ex;r � B(x; r) for each r and there is a positive constant �;
independent of r; such that mn(Ex;r) � �mn(B(x; r)):
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Theorem 5.3.3. (The Lebesgue Di¤erentiation Theorem) Suppose
f 2 L1loc(mn) and x 2 Lf : Then

lim
r!0

1

mn(Ex;r)

Z
Ex;r

j f(y)� f(x) j dy = 0

and

lim
r!0

1

mn(Ex;r)

Z
Ex;r

f(y)dy = f(x):

PROOF. The result follows from the inequality

1

mn(Ex;r)

Z
Ex;r

j f(y)� f(x) j dy � 1

�mn(B(x; r))

Z
B(x;r)

j f(y)� f(x) j dy:

Theorem 5.3.4. Suppose � is a real or positive measure on Rn and suppose
� ? vn: If � is a positive measure it is assumed that �(K) < 1 for every
compact subset of Rn. Then

lim
r!0

�(Ex;r)

vn(Ex;r)
= 0 a.e. [vn]

If Ex;r = B(x; r) and � is the counting measure cQn restricted to Rn then
� ? vn but the limit in Theorem 5.3.4 equals plus in�nity for all x 2 Rn: The
hypothesis "�(K) <1 for every compact subset of Rn" in Theorem 5.3.4 is
not super�ous.

PROOF. Since j �(E) j�j � j (E) if E 2 Rn; there is no restriction to assume
that � is a positive measure (cf. Theorem 3.1.4). Moreover, since

�(Ex;r)

vn(Ex;r)
� �(B(x; r))

�vn(B(x; r))

it can be assumed that Ex;r = B(x; r): Note that the function �(B(�; r))
is Borel measurable for �xed r > 0 and �(B(x; �)) left continuous for �xed
x 2 Rn:
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Suppose A 2 Z� and vn = (vn)A: Given � > 0; it is enough to prove that
F 2 Zvn where

F =

�
x 2 A; lim

r!0

�(B(x; r))

mn(B(x; r))
> �

�
To this end let " > 0 and use Theorem 3.1.3 to get an open U � A such that
�(U) < ": For each x 2 F there is an open ball Bx � U such that

�(Bx) > �vn(Bx):

If V = [x2FBx and c < vn(V ) we use Lemma 5.3.1 to obtain x1; :::; xk such
that Bx1 ; :::; Bxk are pairwise disjoint and

c < 3n�ki=1vn(Bxi) < 3
n��1�ki=1�(Bxi)

� 3n��1�(U) < 3n��1":
Thus vn(V ) � 3n��1": Since V � F 2 Rn and " > 0 is arbitrary, vn(F ) = 0
and the theorem is proved.

Corollary 5.3.1. Suppose F : R!R is an increasing function. Then F 0(x)
exists for almost all x with respect to linear measure.

PROOF. Let D be the set of all points of discontinuity of F: Suppose �1 <
a < b <1 and " > 0: If a < x1 < ::: < xn < b; where x1; :::; xn 2 D and

F (xk+)� F (xk�) � "; k = 1; :::; n

then
n" � �nk=1(F (xk+)� F (xk�)) � F (b)� F (a):

Thus D \ [a; b] is at most denumerable and it follows that D is at most
denumerable. Set H(x) = F (x+) � F (x); x 2 R; and let (xj)Nj=0 be an
enumeration of the members of the set fH > 0g : Moreover, for any a > 0;X

jxj j<a

H(xj) �
X
jxj j<a

(F (xj+)� F (xj�))

� F (a)� F (�a) <1:
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Now, if we introduce

�(A) = �N1 H(xj)�xj(A); A 2 R

then � is a positive measure such that �(K) < 1 for each compact subset
K of R. Furthermore, if h is a non-zero real number;

j 1
h
(H(x+ h)�H(x) j� 1

h
(H(x+ h) +H(x)) � 4 1

4 j h j�(B(x; 2 j h j)

and Theorem 5.3.4 implies that H 0(x) = 0 a.e. [v1]. Therefore, without loss
of generality it may be assumed that F is right continuous and, in addition,
there is no restriction to assume that F (+1)� F (�1) <1:
By Section 1.6 F induces a �nite positive Borel measure � such that

�(]x; y]) = F (y)� F (x) if x < y:

Now consider the Lebesgue decomposition

d� = fdv1 + d�

where f 2 L1(v1) and � ? v1: If x < y;

F (y)� F (x) =
Z y

x

f(t)dt+ �(]x; y])

and the previous two theorems imply that

lim
y#x

F (y)� F (x)
y � x = f(x) a.e. [v1]

If y < x;

F (x)� F (y) =
Z x

y

f(t)dt+ �(]y; x])

and we get

lim
y"x

F (y)� F (x)
y � x = f(x) a.e. [v1] :

The theorem is proved.

Exercises
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1. Suppose F : R! R is increasing and let f 2 L1loc(v1) be such that
F 0(x) = f(x) a.e. [v1] : Prove thatZ y

x

f(t)dt � F (y)� F (x) if�1 < x � y <1:

5.4. Absolutely Continuous Functions and Functions of Bounded
Variation

Throughout this section a and b are reals with a < b and to simplify notation
we set ma;b = mj[a;b]: If f 2 L1(ma;b) we know from the previous section that
the function

(If)(x) =def

Z x

a

f(t)dt; a � x � b

has the derivative f(x) a.e. [ma;b] ; that is

d

dx

Z x

a

f(t)dt = f(x) a.e. [ma;b] :

Our next main task will be to describe the range of the linear map I:
A function F : [a; b] ! R is said to be absolutely continuous if to every

" > 0 there exists a � > 0 such that

�ni=1 j bi � ai j< � implies �ni=1 j F (bi)� F (ai) j< "

whenever ]a1; b1[ ; :::; ]an; bn[ are disjoint open subintervals of [a; b]. It is ob-
vious that an absolutely continuous function is continuous. It can be proved
that the Cantor function is not absolutely continuous.

Theorem 5.4.1. If f 2 L1(ma;b); then If is absolutely continuous.

PROOF. There is no restriction to assume f � 0: Set

d� = fdma;b:
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By Theorem 5.2.2, to every " > 0 there exists a � > 0 such that �(A) < "
for each Lebesgue set A in [a; b] such that ma;b(A) < �: Now restricting A to
be a �nite disjoint union of open intervals, the theorem follows.

Suppose �1 � � < � � 1 and F : ]�; �[! R: For every x 2 ]�; �[ we
de�ne

TF (x) = sup�
n
i=1 j F (xi)� F (xi�1) j

where the supremum is taken over all positive integers n and all choices
(xi)

n
i=0 such that

� < x0 < x1 < ::: < xn = x:

The function TF : ]�; �[! [0;1] is called the total variation of F: Note that
TF is increasing. If TF is a bounded function, F is said to be of bounded varia-
tion. A bounded increasing function on R is of bounded variation. Therefore
the di¤erence of two bounded increasing functions on R is of bounded vari-
ation. Interestingly enough, the converse is true. In the special case ]�; �[ =
R we write F 2 BV if F is of bounded variation.

Theorem 5.4.2. Suppose F 2 BV:
(a) The functions TF + F and TF � F are increasing and

F =
1

2
(TF + F )�

1

2
(TF � F ):

In particular, F is di¤erentiable almost everywhere with respect to linear
measure.
(b) If F is right continuous, then so is TF :

PROOF. (a) Let x < y and " > 0: Choose x0 < x1 < ::: < xn = x such that

�ni=1 j F (xi)� F (xi�1) j� Tf (x)� ":

Then
TF (y) + F (y)
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� �ni=1 j F (xi)� F (xi�1) j + j F (y)� F (x) j +(F (y)� F (x)) + F (x)

� TF (x)� "+ F (x)

and, since " > 0 is arbitrary, TF (y) +F (y) � TF (x) +F (x): Hence TF +F is
increasing. Finally, replacing F by �F it follows that the function TF � F
is increasing.

(b) If c 2 R and x > c;

Tf (x) = TF (c) + sup�
n
i=1 j F (xi)� F (xi�1) j

where the supremum is taken over all positive integers n and all choices
(xi)

n
i=0 such that

c = x0 < x1 < ::: < xn = x:

Suppose TF (c+) > TF (c) where c 2 R: Then there is an " > 0 such that

TF (x)� TF (c) > "

for all x > c: Now, since F is right continuous at the point c, for �xed x > c
there exists a partition

c < x11 < ::: < x1n1 = x

such that
�n1i=2 j F (x1i)� F (x1i�1) j> ":

But
TF (x11)� TF (c) > "

and we get a partition

c < x21 < ::: < x2n2 = x11

such that
�n2i=2 j F (x2i)� F (x2i�1) j> ":

Summing up we have got a partition of the interval [x21; x] with

�n2i=2 j F (x2i)� F (x2i�1) j +�n1i=2 j F (x1i)� F (x1i�1) j> 2":
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By repeating the process the total variation of F becomes in�nite, which is
a contradiction. The theorem is proved.

Theorem 5.4.3. Suppose F : [a; b] ! R is absolutely continuous. Then
there exists a unique f 2 L1(ma;b) such that

F (x) = F (a) +

Z x

a

f(t)dt; a � x � b:

In particular, the range of the map I equals the set of all real-valued absolutely
continuous maps on [a; b] :

PROOF. Set F (x) = F (a) if x � a and F (x) = F (b) if x � b: There exists a
� > 0 such that

�ni=1 j bi � ai j< � implies �ni=1 j F (bi)� F (ai) j< 1

whenever ]a1; b1[ ; :::; ]an; bn[ are disjoint subintervals of [a; b] : Let p be the
least positive integer such that a + p� � b: Then TF � p and F 2 BV: Let
F = G � H; where G = 1

2
(TF + F ) and H = 1

2
(TF � F ): There exist �nite

positive Borel measures �G and �H such that

�G(]x; y]) = G(y)�G(x); x � y

and
�H(]x; y]) = H(y)�H(x); x � y:

If we de�ne � = �G � �H ;

�(]x; y]) = F (y)� F (x); x � y:

Clearly,
�(]x; y[) = F (y)� F (x); x � y

since F is continuous.
Our next task will be to prove that � << v1. To this end, suppose A 2 R

and v1(A) = 0: Now choose " > 0 and let � > 0 be as in the de�nition of the
absolute continuity of F on [a; b] : For each k 2 N+ there exists an open set
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Vk � A such that v1(Vk) < � and limk!1 �(Vk) = �(A): But each �xed Vk is
a disjoint union of open intervals (]ai; bi[)1i=1 and hence

�ni=1 j bi � ai j< �

for every n and, accordingly from this,

�1i=1 j F (bi)� F (ai) j� "

and
j �(Vk) j� �1i=1 j �(]ai; bi[) j� ":

Thus j �(A) j� " and since " > 0 is arbitrary, �(A) = 0: From this � << v1
and the theorem follows at once.

Suppose (X;M; �) is a positive measure space. From now on we write
f 2 L1(�) if there exist a g 2 L1(�) and an A 2 M such that Ac 2 Z� and
f(x) = g(x) for all x 2 A: Furthermore, we de�neZ

X

fd� =

Z
X

gd�

(cf the discussion in Section 2). Note that f(x) need not be de�ned for every
x 2 X:

Corollary 5.4.1. A function f : [a; b]! R is absolutely continuous if and
only if the following conditions are true:
(i) f 0(x) exists for ma;b-almost all x 2 [a; b]
(ii) f 0 2 L1(ma;b)
(iii) f(x) = f(a) +

R x
a
f 0(t)dt; all x 2 [a; b] :

Exercises

1. Suppose f : [0; 1] ! R satis�es f(0) = 0 and

f(x) = x2 sin
1

x2
if 0 < x � 1:
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Prove that f is di¤erentiable everywhere but f is not absolutely continuous.

2. Suppose � is a positive real number and f a function on [0; 1] such that
f(0) = 0 and f(x) = x� sin 1

x
; 0 < x � 1. Prove that f is absolutely

continuous if and only if � > 1:

3. Suppose f(x) = x cos(�=x) if 0 < x < 2 and f(x) = 0 if x 2 Rn ]0; 2[ :
Prove that f is not of bounded variation on R.

4 A function f : [a; b] ! R is a Lipschitz function, that is there exists a
positive real number C such that

j f(x)� f(y) j� C j x� y j

for all x; y 2 [a; b] : Show that f is absolutely continuous and j f 0(x) j� C
a.e. [ma;b] :

5. Suppose f : [a; b] ! R is absolutely continuous. Prove that

Tg(x) =

Z x

a

j f 0(t) j dt; a < x < b

if g is the restriction of f to the open interval ]a; b[ :

6. Suppose f and g are real-valued absolutely continuous functions on the
compact interval [a; b]. Show that the function h = max(f; g) is absolutely
continuous and h0 � max(f 0; g0) a.e. [ma;b].

###

5.5. Conditional Expectation
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Let (
;F ; P ) be a probability space and suppose � 2 L1(P ): Moreover,
suppose G � F is a �-algebra and set

�(A) = P [A] ; A 2 G

and

�(A) =

Z
A

�dP; A 2 G:

It is trivial that Z� = ZP \G � Z� and the Radon-Nikodym Theorem shows
there exists a unique � 2 L1(�) such that

�(A) =

Z
A

�d� all A 2 G

or, what amounts to the same thing,Z
A

�dP =

Z
A

�dP all A 2 G:

Note that � is (G;R)-measurable. The random variable � is called the con-
ditional expectation of � given G and it is standard to write � = E [� j G] :
A sequence of �-algebras (Fn)1n=1 is called a �ltration if

Fn � Fn+1 � F :

If (Fn)1n=1 is a �ltration and (�n)1n=1 is a sequence of real valued random
variables such that for each n;

(a) �n 2 L1(P )
(b) �n is (Fn;R)-measurable
(c) E

�
�n+1 j Fn

�
= �n

then (�n;Fn)1n=1 is called a martingale. There are very nice connections
between martingales and the theory of di¤erentiation (see e.g Billingsley [B]
and Malliavin [M ]):

"""


