CHAPTER 5 DECOMPOSITION OF MEASURES

Introduction

In this section a version of the fundamental theorem of calculus for Lebesgue integrals will be proved. Moreover, the concept of differentiating a measure with respect to another measure will be developped. A very important result in this chapter is the so called Radon-Nikodym Theorem.

5.1. Complex Measures

Let (X, \mathcal{M}) be a measurable space. Recall that if $A_n \subseteq X$, $n \in \mathbf{N}_+$, and $A_i \cap A_j = \phi$ if $i \neq j$, the sequence $(A_n)_{n \in \mathbf{N}_+}$ is called a disjoint denumerable collection. The collection is called a measurable partition of A if $A = \bigcup_{n=1}^{\infty} A_n$ and $A_n \in \mathcal{M}$ for every $n \in \mathbf{N}_+$.

A complex function μ on \mathcal{M} is called a complex measure if

$$\mu(A) = \sum_{n=1}^{\infty} \mu(A_n)$$

for every $A \in \mathcal{M}$ and measurable partition $(A_n)_{n=1}^{\infty}$ of A. Note that $\mu(\phi) = 0$ if μ is a complex measure. A complex measure is said to be a real measure if it is a real function. The reader should note that a positive measure need not be a real measure since infinity is not a real number. If μ is a complex measure $\mu = \mu_{\text{Re}} + i\mu_{\text{Im}}$, where $\mu_{\text{Re}} = \text{Re } \mu$ and $\mu_{\text{Im}} = \text{Im } \mu$ are real measures.

If (X, \mathcal{M}, μ) is a positive measure and $f \in L^1(\mu)$ it follows that

$$\lambda(A) = \int_A f d\mu, \ A \in \mathcal{M}$$

is a real measure and we write $d\lambda = f d\mu$.

A function $\mu: \mathcal{M} \to [-\infty, \infty]$ is called a signed measure measure if

(a)
$$\mu : \mathcal{M} \to]-\infty, \infty]$$
 or $\mu : \mathcal{M} \to [-\infty, \infty[$
(b) $\mu(\phi) = 0$
and
(c) for every $A \in \mathcal{M}$ and measurable partition $(A_n)_{n=1}^{\infty}$ of A ,

$$\mu(A) = \sum_{n=1}^{\infty} \mu(A_n)$$

where the latter sum converges absolutely if $\mu(A) \in \mathbf{R}$.

Here $-\infty - \infty = -\infty$ and $-\infty + x = -\infty$ if $x \in \mathbf{R}$. The sum of a positive measure and a real measure and the difference of a real measure and a positive measure are examples of signed measures and it can be proved that there are no other signed measures (see Folland [F]). Below we concentrate on positive, real, and complex measures and will not say more about signed measures here.

Suppose μ is a complex measure on \mathcal{M} and define for every $A \in \mathcal{M}$

$$\mid \mu \mid (A) = \sup \sum_{n=1}^{\infty} \mid \mu(A_n) \mid,$$

where the supremum is taken over all measurable partitions $(A_n)_{n=1}^{\infty}$ of A. Note that $|\mu|(\phi) = 0$ and

$$|\mu|(A) \ge |\mu(B)|$$
 if $A, B \in \mathcal{M}$ and $A \supseteq B$.

The set function $|\mu|$ is called the total variation of μ or the total variation measure of μ . It turns out that $|\mu|$ is a positive measure. In fact, as will shortly be seen, $|\mu|$ is a finite positive measure.

Theorem 5.1.1. The total variation $|\mu|$ of a complex measure is a positive measure.

PROOF. Let $(A_n)_{n=1}^{\infty}$ be a measurable partition of A.

For each n, suppose $a_n < |\mu| (A_n)$ and let $(E_{kn})_{k=1}^{\infty}$ be a measurable partition of A_n such that

$$a_n < \Sigma_{k=1}^{\infty} \mid \mu(E_{kn}) \mid .$$

Since $(E_{kn})_{k,n=1}^{\infty}$ is a partition of A it follows that

$$\sum_{n=1}^{\infty} a_n < \sum_{k,n=1}^{\infty} | \mu(E_{kn}) | \leq | \mu | (A).$$

Thus

$$\Sigma_{n=1}^{\infty} \mid \mu \mid (A_n) \leq \mid \mu \mid (A).$$

To prove the opposite inequality, let $(E_k)_{k=1}^{\infty}$ be a measurable partition of A. Then, since $(A_n \cap E_k)_{n=1}^{\infty}$ is a measurable partition of E_k and $(A_n \cap E_k)_{k=1}^{\infty}$ a measurable partition of A_n ,

$$\Sigma_{k=1}^{\infty} \mid \mu(E_k) \mid = \Sigma_{k=1}^{\infty} \mid \Sigma_{n=1}^{\infty} \mu(A_n \cap E_k) \mid$$
$$\leq \Sigma_{k,n=1}^{\infty} \mid \mu(A_n \cap E_k) \mid \leq \Sigma_{n=1}^{\infty} \mid \mu \mid (A_n)$$

and we get

$$\mid \mu \mid (A) \le \sum_{n=1}^{\infty} \mid \mu \mid (A_n).$$

Thus

$$\mid \mu \mid (A) = \sum_{n=1}^{\infty} \mid \mu \mid (A_n).$$

Since $|\mu|(\phi) = 0$, the theorem is proved.

Theorem 5.1.2. The total variation $|\mu|$ of a complex measure μ is a finite positive measure.

PROOF. Since

$$\mu \mid \leq \mid \mu_{\rm Re} \mid + \mid \mu_{\rm Im} \mid$$

there is no loss of generality to assume that μ is a real measure.

Suppose $|\mu|(E) = \infty$ for some $E \in \mathcal{M}$. We first prove that there exist disjoint sets $A, B \in \mathcal{M}$ such that

$$A \cup B = E$$

and

$$\mid \mu(A) \mid > 1 \text{ and } \mid \mu \mid (B) = \infty.$$

To this end let $c = 2(1 + | \mu(E) |)$ and let $(E_k)_{k=1}^{\infty}$ be a measurable partition of E such that

$$\sum_{k=1}^{n} \mid \mu(E_k) \mid > c$$

for some sufficiently large n. There exists a subset N of $\{1, ..., n\}$ such that

$$\mid \Sigma_{k \in N} \mu(E_k) \mid > \frac{c}{2}.$$

Set $A = \bigcup_{k \in \mathbb{N}} E_k$ and $B = E \setminus A$. Then $|\mu(A)| > \frac{c}{2} \ge 1$ and

$$|\mu(B)| = |\mu(E) - \mu(A)|$$

 $\geq |\mu(A)| - |\mu(E)| > \frac{c}{2} - |\mu(E)| = 1.$

Since $\infty = |\mu| (E) = |\mu| (A) + |\mu| (B)$ we have $|\mu| (A) = \infty$ or $|\mu| (B) = \infty$. If $|\mu| (B) < \infty$ we interchange A and B and have $|\mu(A)| > 1$ and $|\mu| (B) = \infty$.

Suppose $|\mu|(X) = \infty$. Set $E_0 = X$ and choose disjoint sets $A_0, B_0 \in \mathcal{M}$ such that

$$A_0 \cup B_0 = E_0$$

and

$$| \mu(A_0) | > 1 \text{ and } | \mu | (B_0) = \infty.$$

Set $E_1 = B_0$ and choose disjoint sets $A_1, B_1 \in \mathcal{M}$ such that

$$A_1 \cup B_1 = E_1$$

and

$$|\mu(A_1)| > 1$$
 and $|\mu|(B_1) = \infty$.

By induction, we find a measurable partition $(A_n)_{n=0}^{\infty}$ of the set $A =_{def} \bigcup_{n=0}^{\infty} A_n$ such that $|\mu(A_n)| > 1$ for every *n*. Now, since μ is a complex measure,

$$\mu(A) = \sum_{n=0}^{\infty} \mu(A_n)$$

But this series cannot converge, since the general term does not tend to zero as $n \to \infty$. This contradiction shows that $|\mu|$ is a finite positive measure.

If μ is a real measure we define

$$\mu^{+} = \frac{1}{2}(|\mu| + \mu)$$

and

$$\mu^{-} = \frac{1}{2}(|\mu| - \mu).$$

The measures μ^+ and μ^- are finite positive measures and are called the positive and negative variations of μ , respectively. The representation

$$\mu = \mu^+ - \mu^-$$

is called the Jordan decomposition of μ .

Exercises

1. Suppose (X, \mathcal{M}, μ) is a positive measure space and $d\lambda = f d\mu$, where $f \in L^1(\mu)$. Prove that $d \mid \lambda \mid = \mid f \mid d\mu$.

2. Suppose λ, μ , and ν are real measures defined on the same σ -algebra and $\lambda \leq \mu$ and $\lambda \leq \nu$. Prove that

$$\lambda \leq \min(\mu, \nu)$$

where

$$\min(\mu, \nu) = \frac{1}{2}(\mu + \nu - |\mu - \nu|).$$

3. Suppose $\mu : \mathcal{M} \to \mathbf{C}$ is a complex measure and $f, g : X \to \mathbf{R}$ measurable functions. Show that

$$\mid \mu(f \in A) - \mu(g \in A) \mid \leq \mid \mu \mid (f \neq g)$$

for every $A \in \mathcal{R}$.

5.2. The Lebesque Decomposition and the Radon-Nikodym Theorem

Let μ be a positive measure on \mathcal{M} and λ a positive or complex measure on \mathcal{M} . The measure λ is said to be absolutely continuous with respect to μ (abbreviated $\lambda \ll \mu$) if $\lambda(A) = 0$ for every $A \in \mathcal{M}$ for which $\mu(A) = 0$. If we define

$$\mathcal{Z}_{\lambda} = \{ A \in \mathcal{M}; \ \lambda(A) = 0 \}$$

it follows that $\lambda \ll \mu$ if and only if

$$\mathcal{Z}_{\mu} \subseteq \mathcal{Z}_{\lambda}.$$

For example, $\gamma_n \ll v_n$ and $v_n \ll \gamma_n$.

The measure λ is said to be concentrated on $E \in \mathcal{M}$ if $\lambda = \lambda^E$, where $\lambda^E(A) =_{def} \lambda(E \cap A)$ for every $A \in \mathcal{M}$. This is equivalent to the hypothesis that $A \in \mathcal{Z}_{\lambda}$ if $A \in \mathcal{M}$ and $A \cap E = \phi$. Thus if $E_1, E_2 \in \mathcal{M}$, where $E_1 \subseteq E_2$, and λ is concentrated on E_1 , then λ is concentrated on E_2 . Moreover, if $E_1, E_2 \in \mathcal{M}$ and λ is concentrated on both E_1 and E_2 , then λ is concentrated on $E_1 \cap E_2$. Two measures λ_1 and λ_2 are said to be mutually singular (abbreviated $\lambda_1 \perp \lambda_2$) if there exist disjoint measurable sets E_1 and E_2 .

Theorem 5.2.1. Let μ be a positive measure and λ , λ_1 , and λ_2 complex measures.

(i) If $\lambda_1 \ll \mu$ and $\lambda_2 \ll \mu$, then $(\alpha_1\lambda_1 + \alpha_2\lambda_2) \ll \mu$ for all complex numbers α_1 and α_2 .

(ii) If $\lambda_1 \perp \mu$ and $\lambda_2 \perp \mu$, then $(\alpha_1\lambda_1 + \alpha_2\lambda_2) \perp \mu$ for all complex numbers α_1 and α_2 .

(iii) If $\lambda \ll \mu$ and $\lambda \perp \mu$, then $\lambda = 0$.

(iv) If $\lambda \ll \mu$, then $|\lambda| \ll \mu$.

PROOF. The properties (i) and (ii) are simple to prove and are left as exercises.

To prove (iii) suppose $E \in \mathcal{M}$ is a μ -null set and $\lambda = \lambda^E$. If $A \in \mathcal{M}$, then $\lambda(A) = \lambda(A \cap E)$ and $A \cap E$ is a μ -null set. Since $\lambda \ll \mu$ it follows that $A \cap E \in Z_{\lambda}$ and, hence, $\lambda(A) = \lambda(A \cap E) = 0$. This proves (iii)

To prove (iv) suppose $A \in \mathcal{M}$ and $\mu(A) = 0$. If $(A_n)_{n=1}^{\infty}$ is measurable partition of A, then $\mu(A_n) = 0$ for every n. Since $\lambda \ll \mu$, $\lambda(A_n) = 0$ for every n and we conclude that $|\lambda| (A) = 0$. This proves (vi).

Theorem 5.2.2. Let μ be a positive measure on \mathcal{M} and λ a complex measure on \mathcal{M} . Then the following conditions are equivalent:

(a) $\lambda \ll \mu$.

(b) To every $\varepsilon > 0$ there corresponds a $\delta > 0$ such that $|\lambda(E)| < \varepsilon$ for all $E \in \mathcal{M}$ with $\mu(E) < \delta$.

If λ is a positive measure, the implication $(a) \Rightarrow (b)$ in Theorem 5.2.2 is, in general, wrong. To see this take $\mu = \gamma_1$ and $\lambda = v_1$. Then $\lambda \ll \mu$ and if we choose $A_n = [n, \infty[, n \in \mathbf{N}_+, \text{then } \mu(A_n) \to 0 \text{ as } n \to \infty \text{ but } \lambda(A_n) = \infty$ for each n.

PROOF. (a) \Rightarrow (b). If (b) is wrong there exist an $\varepsilon > 0$ and sets $E_n \in \mathcal{M}$, $n \in \mathbf{N}_+$, such that $|\lambda(E_n)| \ge \varepsilon$ and $\mu(E_n) < 2^{-n}$. Set

$$A_n = \bigcup_{k=n}^{\infty} E_k$$
 and $A = \bigcap_{n=1}^{\infty} A_n$.

Since $A_n \supseteq A_{n+1} \supseteq A$ and $\mu(A_n) < 2^{-n+1}$, it follows that $\mu(A) = 0$ and using that $|\lambda| (A_n) \ge |\lambda(E_n)|$, Theorem 1.1.2 (f) implies that

$$|\lambda|(A) = \lim_{n \to \infty} |\lambda|(A_n) \ge \varepsilon.$$

This contradicts that $|\lambda| << \mu$.

(b) \Rightarrow (a). If $E \in \mathcal{M}$ and $\mu(E) = 0$ then to each $\varepsilon > 0$, $|\lambda(E)| < \varepsilon$, and we conclude that $\lambda(E) = 0$. The theorem is proved.

Theorem 5.2.3. Let μ be a σ -finite positive measure and λ a real measure on \mathcal{M} .

(a) (The Lebesgue Decomposition of λ) There exists a unique pair of real measures λ_a and λ_s on \mathcal{M} such that

$$\lambda = \lambda_a + \lambda_s, \ \lambda_a \ll \mu, \ \text{and} \ \lambda_s \perp \mu.$$

If λ is a finite positive measure, λ_a and λ_s are finite positive measures.

(b) (The Radon-Nikodym Theorem) There exits a unique $g \in L^1(\mu)$ such that

$$d\lambda_a = gd\mu.$$

If λ is a finite positive measure, $g \ge 0$ a.e. $[\mu]$.

The proof of Theorem 5.2.3 is based on the following

Lemma 5.2.1. Let (X, M, μ) be a finite positive measure space and suppose $f \in L^1(\mu)$.

(a) If $a \in \mathbf{R}$ and

$$\int_{E} f d\mu \le a\mu(E), \text{ all } E \in \mathcal{M}$$

then $f \leq a$ a.e. $[\mu]$. (b) If $b \in \mathbf{R}$ and

$$\int_{E} f d\mu \ge b\mu(E), \text{ all } E \in \mathcal{M}$$

then $f \geq b$ a.e. $[\mu]$.

PROOF. (a) Set g = f - a so that

$$\int_E gd\mu \le 0, \ all \ E \in \mathcal{M}.$$

Now choose $E = \{g > 0\}$ to obtain

$$0 \geq \int_E g d\mu = \int_X \chi_E g d\mu \geq 0$$

as $\chi_E g \ge 0$ a.e. $[\mu]$. But then Example 2.1.2 yields $\chi_E g = 0$ a.e. $[\mu]$ and we get $E \in Z_{\mu}$. Thus $g \leq 0$ a.e. $[\mu]$ or $f \leq a$ a.e. $[\mu]$.

Part (b) follows in a similar way as Part (a) and the proof is omitted here.

PROOF. Uniqueness: (a) Suppose $\lambda_a^{(k)}$ and $\lambda_s^{(k)}$ are real measures on \mathcal{M} such that

$$\lambda = \lambda_a^{(k)} + \lambda_s^{(k)}, \ \lambda_a^{(k)} << \mu, \text{ and } \lambda_s^{(k)} \perp \mu$$

for k = 1, 2. Then

$$\lambda_a^{(1)} - \lambda_a^{(2)} = \lambda_s^{(2)} - \lambda_s^{(1)}$$

and

$$\lambda_a^{(1)} - \lambda_a^{(2)} \ll \mu \text{ and } \lambda_a^{(1)} - \lambda_a^{(2)} \perp \mu$$

Thus by applying Theorem 5.2.1, $\lambda_a^{(1)} - \lambda_a^{(2)} = 0$ and $\lambda_a^{(1)} = \lambda_a^{(2)}$. From this we conclude that $\lambda_s^{(1)} = \lambda_s^{(2)}$. (b) Suppose $g_k \in L^1(\mu), k = 1, 2$, and

$$d\lambda_a = g_1 d\mu = g_2 d\mu.$$

Then $hd\mu = 0$ where $h = g_1 - g_2$. But then

$$\int_{\{h>0\}} h d\mu = 0$$

and it follows that $h \leq 0$ a.e. $[\mu]$. In a similar way we prove that $h \geq 0$ a.e. [μ]. Thus h = 0 in $L^1(\mu)$, that is $g_1 = g_2$ in $L^1(\mu)$.

Existence: The beautiful proof that follows is due to von Neumann.

First suppose that μ and λ are finite positive measures and set $\nu = \lambda + \mu$. Clearly, $L^1(\lambda) \supseteq L^1(\nu) \supseteq L^2(\nu)$. Moreover, if $f: X \to \mathbf{R}$ is measurable

$$\int_X |f| d\lambda \le \int_X |f| d\nu \le \sqrt{\int_X f^2 d\nu \sqrt{\nu(X)}}$$

and from this we conclude that the map

$$f \to \int_X f d\lambda$$

is a continuous linear functional on $L^2(\nu)$. Therefore, in view of Theorem 4.2.2, there exists a $g \in L^2(\nu)$ such that

$$\int_X f d\lambda = \int_X f g d\nu \text{ all } f \in L^2(\nu).$$

Suppose $E \in \mathcal{M}$ and put $f = \chi_E$ to obtain

$$0 \leq \lambda(E) = \int_E g d\nu$$

and, since $\nu \geq \lambda$,

$$0 \le \int_E g d\nu \le \nu(E).$$

But then Lemma 5.2.1 implies that $0 \le g \le 1$ a.e. $[\nu]$. Therefore, without loss of generality we can assume that $0 \le g(x) \le 1$ for all $x \in X$ and, in addition, as above

$$\int_X f d\lambda = \int_X f g d\nu \text{ all } f \in L^2(\nu)$$

that is

$$\int_X f(1-g)d\lambda = \int_X fgd\mu \text{ all } f \in L^2(\nu).$$

Put $A = \{0 \le g < 1\}$, $S = \{g = 1\}$, $\lambda_a = \lambda^A$, and $\lambda_s = \lambda^S$. Note that $\lambda = \lambda^A + \lambda^S$. The choice $f = \chi_S$ gives $\mu(S) = 0$ and hence $\lambda_s \perp \mu$. Moreover, the choice

$$f = (1 + \dots + g^n)\chi_E$$

where $E \in \mathcal{M}$, gives

$$\int_E (1-g^{n+1})d\lambda = \int_E (1+\ldots+g^n)gd\mu$$

By letting $n \to \infty$ and using monotone convergence

$$\lambda(E \cap A) = \int_E h d\mu.$$

where

$$h = \lim_{n \to \infty} (1 + \ldots + g^n) g$$

Since h is non-negative and

$$\lambda(A) = \int_X h d\mu$$

it follows that $h \in L^1(\mu)$. Moreover, the construction above shows that $\lambda = \lambda_a + \lambda_s$.

In the next step we assume that μ is a σ -finite positive measure and λ a finite positive measure. Let $(X_n)_{n=1}^{\infty}$ be a measurable partition of X such that $\mu(X_n) < \infty$ for every n. Let n be fixed and apply Part (a) to the pair μ^{X_n} and λ^{X_n} to obtain finite positive measures $(\lambda^{X_n})_a$ and $(\lambda^{X_n})_s$ such that

$$\lambda^{X_n} = (\lambda^{X_n})_a + (\lambda^{X_n})_s, \ (\lambda^{X_n})_a \ll \mu^{X_n}, \text{ and } (\lambda^{X_n})_s \perp \mu^{X_n}$$

and

$$d(\lambda^{X_n})_a = h_n d\mu^{X_n} \text{ (or } (\lambda^{X_n})_a = h_n \mu^{X_n})$$

where $0 \leq h_n \in L^1(\mu^{X_n})$. Without loss of generality we can assume that $h_n = 0$ off X_n and that $(\lambda^{X_n})_s$ is concentrated on $A_n \subseteq X_n$ where $A_n \in \mathcal{Z}_{\mu}$. In particular, $(\lambda^{X_n})_a = h_n \mu$. Now

$$\lambda = h\mu + \sum_{n=1}^{\infty} (\lambda^{X_n})_s$$

where

$$h = \sum_{n=1}^{\infty} h_n$$

and

$$\int_X h d\mu \le \lambda(X) < \infty$$

Thus $h \in L^1(\mu)$. Moreover, $\lambda_s =_{def} \sum_{n=1}^{\infty} (\lambda^{X_n})_s$ is concentrated on $\bigcup_{n=1}^{\infty} A_n \in \mathcal{Z}_{\mu}$. Hence $\lambda_s \perp \mu$.

Finally if λ is a real measure we apply what we have already proved to the positive and negative variations of λ and we are done.

Example 5.2.1. Let λ be Lebesgue measure in the unit interval and μ the counting measure in the unit interval restricted to the class of all Lebesgue measurable subsets of the unit interval. Clearly, $\lambda \ll \mu$. Suppose there is an

 $h \in L^1(\mu)$ such that $d\lambda = hd\mu$. We can assume that $h \ge 0$ and the Markov inequality implies that the set $\{h \ge \varepsilon\}$ is finite for every $\varepsilon > 0$. But then

$$\lambda(h \in]0,1]) = \lim_{n \to \infty} \lambda(h \ge 2^{-n}) = 0$$

and it follows that $1 = \lambda(h = 0) = \int_{\{h=0\}} h d\mu = 0$, which is a contradiction.

Corollary 5.2.1. Suppose μ is a real measure. Then there exists

 $h \in L^1(\mid \mu \mid)$

such that |h(x)| = 1 for all $x \in X$ and

$$d\mu = hd \mid \mu \mid .$$

PROOF. Since $| \mu(A) | \leq | \mu |$ (A) for every $A \in \mathcal{M}$, the Radon-Nikodym Theorem implies that $d\mu = hd | \mu |$ for an appropriate $h \in L^1(| \mu |)$. But then $d | \mu | = | h | d | \mu |$ (see Exercise 1 in Chapter 5.1). Thus

$$\mid \mu \mid (E) = \int_{E} \mid h \mid d \mid \mu \mid, \text{ all } E \in \mathcal{M}$$

and Lemma 5.2.1 yields h = 1 a.e. $[| \mu |]$. From this the theorem follows at once.

Theorem 5.2.4. (Hahn's Decomposition Theorem) Suppose μ is a real measure. There exists an $A \in \mathcal{M}$ such that

$$\mu^{+} = \mu^{A}$$
 and $\mu^{-} = -\mu^{A^{c}}$.

PROOF. Let $d\mu = hd \mid \mu \mid$ where $\mid h \mid = 1$. Note that $hd\mu = d \mid \mu \mid$. Set $A = \{h = 1\}$. Then

$$d\mu^{+} = \frac{1}{2}(d \mid \mu \mid +d\mu) = \frac{1}{2}(h+1)d\mu = \chi_{A}d\mu$$

and

$$d\mu^{-} = d\mu^{+} - d\mu = (\chi_{A} - 1)d\mu = -\chi_{A^{c}}d\mu.$$

The theorem is proved.

If a real measure λ is absolutely continuous with respect to a σ -finite positive measure μ , the Radon-Nikodym Theorem says that $d\lambda = f d\mu$ for an appropriate $f \in L^1(\mu)$. We sometimes write

$$f = \frac{d\lambda}{d\mu}$$

and call f the Radon-Nikodym derivate of λ with respect to μ .

Exercises

1. Suppose μ and $\nu_n, n \in \mathbb{N}$, are positive measures defined on the same σ -algebra and set $\theta = \sum_{n=0}^{\infty} \nu_n$. Prove that

- a) $\theta \perp \mu$ if $\nu_n \perp \mu$, all $n \in \mathbf{N}$.
- b) $\theta \ll \mu$ if $\nu_n \ll \mu$, all $n \in \mathbf{N}$.

2. Suppose μ is a real measure and $\mu = \lambda_1 - \lambda_2$, where λ_1 and λ_2 are finite positive measures. Prove that $\lambda_1 \ge \mu^+$ and $\lambda_2 \ge \mu^-$.

3. Let λ_1 and λ_2 be mutually singular complex measures on the same σ -algebra. Show that $|\lambda_1| \perp |\lambda_2|$.

4. Let (X, \mathcal{M}, μ) be a σ -finite positive measure space and suppose λ and τ are two probability measures defined on the σ -algebra \mathcal{M} such that $\lambda \ll \mu$ and $\tau \ll \mu$. Prove that

$$\sup_{A \in \mathcal{M}} |\lambda(A) - \tau(A)| = \frac{1}{2} \int_X |\frac{d\lambda}{d\mu} - \frac{d\tau}{d\mu}| d\mu.$$

5.3. The Wiener Maximal Theorem and the Lebesgue Differentiation Theorem

We say that a Lebesgue measurable function f in \mathbb{R}^n is locally Lebesgue integrable and belongs to the class $L^1_{loc}(m_n)$ if $f\chi_K \in L^1(m_n)$ for each compact subset K of \mathbb{R}^n . In a similar way $f \in L^1_{loc}(v_n)$ if f is a Borel function such that $f\chi_K \in L^1(v_n)$ for each compact subset K of \mathbb{R}^n . If $f \in L^1_{loc}(m_n)$, we define the average $A_r f(x)$ of f on the open ball B(x, r) as

$$A_r f(x) = \frac{1}{m_n(B(x,r))} \int_{B(x,r)} f(y) dy$$

It follows from dominated convergence that the map $(x, r) \to A_r f(x)$ of $\mathbf{R}^n \times]0, \infty[$ into \mathbf{R} is continuous. The Hardy-Littlewood maximal function f^* is, by definition, $f^* = \sup_{r>0} A_r | f |$ or, stated more explicitly,

$$f^*(x) = \sup_{r>0} \frac{1}{m_n(B(x,r))} \int_{B(x,r)} |f(y)| \, dy, \ x \in \mathbf{R}^n.$$

The function $f^* : (\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n)) \to ([0, \infty], \mathcal{R}_{0,\infty})$ is measurable since

$$f^* = \sup_{\substack{r > 0\\r \in \mathbf{Q}}} A_r \mid f \mid$$

Theorem 5.3.1. (Wiener's Maximal Theorem) There exists a positive constant $C = C_n < \infty$ such that for all $f \in L^1(m_n)$,

$$m_n(f^* > \alpha) \le \frac{C}{\alpha} \parallel f \parallel_1 \text{ if } \alpha > 0.$$

The proof of the Wiener Maximal Theorem is based on the following remarkable result.

Lemma 5.3.1. Let C be a collection of open balls in \mathbb{R}^n and set $V = \bigcup_{B \in C} B$. If $c < m_n(V)$ there exist pairwise disjoint $B_1, ..., B_k \in C$ such that

$$\sum_{i=1}^k m_n(B_i) > 3^{-n}c.$$

PROOF. Let $K \subseteq V$ be compact with $m_n(K) > c$, and suppose $A_1, ..., A_p \in C$ cover K. Let B_1 be the largest of the $A'_i s$ (that is, B_1 has maximal radius), let B_2 be the largest of the $A'_i s$ which are disjoint from B_1 , let B_3 be the largest of the $A'_i s$ which are disjoint from $B_1 \cup B_2$, and so on until the process stops after k steps. If $B_i = B(x_i, r_i)$ put $B^*_i = B(x_i, 3r_i)$. Then $\cup_{i=1}^k B^*_i \supseteq K$ and

$$c < \sum_{i=1}^{k} m_n(B_i^*) = 3^n \sum_{i=1}^{k} m_n(B_i).$$

The lemma is proved.

PROOF OF THEOREM 5.3.1. Set

$$E_{\alpha} = \{f^* > \alpha\}.$$

For each $x \in E_{\alpha}$ choose an $r_x > 0$ such that $A_{r_x} \mid f \mid (x) > \alpha$. If $c < m_n(E_{\alpha})$, by Lemma 5.3.1 there exist $x_1, ..., x_k \in E_{\alpha}$ such that the balls $B_i = B(x_i, r_{x_i})$, i = 1, ..., k, are mutually disjoint and

$$\sum_{i=1}^{k} m_n(B_i) > 3^{-n}c.$$

But then

$$c < 3^n \Sigma_{i=1}^k m_n(B_i) < \frac{3^n}{\alpha} \Sigma_{i=1}^k \int_{B_i} |f(y)| dy \le \frac{3^n}{\alpha} \int_{\mathbf{R}^n} |f(y)| dy.$$

The theorem is proved.

Theorem 5.3.2. If $f \in L^{1}_{loc}(m_n)$,

$$\lim_{r \to 0} \frac{1}{m_n(B(x,r))} \int_{B(x,r)} f(y) dy = f(x) \text{ a.e. } [m_n].$$

PROOF. Clearly, there is no loss of generality to assume that $f \in L^1(m_n)$. Suppose $g \in C_c(\mathbf{R}^n) =_{def} \{ f \in C(\mathbf{R}^n); f(x) = 0 \text{ if } |x| \text{ large enough} \}$. Then

$$\lim_{r \to 0} A_r g(x) = g(x) \text{ all } x \in \mathbf{R}^n.$$

Since $A_r f - f = A_r (f - g) - (f - g) + A_r g - g$,

$$\overline{\lim_{r \to 0}} \mid A_r f - f \mid \leq (f - g)^* + \mid f - g \mid .$$

Now, for fixed $\alpha > 0$,

$$m_n(\overline{\lim_{r \to 0}} \mid A_r f - f \mid > \alpha)$$

$$\leq m_n((f - g)^* > \frac{\alpha}{2}) + m_n(\mid f - g \mid > \frac{\alpha}{2})$$

and the Wiener Maximal Theorem and the Markov Inequality give

$$m_n(\overline{\lim_{r\to 0}} \mid A_r f - f \mid > \alpha)$$
$$\leq (\frac{2C}{\alpha} + \frac{2}{\alpha}) \parallel f - g \parallel_1.$$

Remembering that $C_c(\mathbf{R}^n)$ is dense in $L^1(m_n)$, the theorem follows at once.

If $f \in L^1_{loc}(m_n)$ we define the so called Lebesgue set L_f to be

$$L_f = \left\{ x; \lim_{r \to 0} \frac{1}{m_n(B(x,r))} \int_{B(x,r)} |f(y) - f(x)| \, dy = 0 \right\}.$$

Note that if q is real and

$$E_q = \left\{ x; \lim_{r \to 0} \frac{1}{m_n(B(x,r))} \int_{B(x,r)} |f(y) - q| \, dy = |f(x) - q| \right\}$$

then $m_n(\cup_{q\in\mathbf{Q}}E_q^c)=0$. If $x\in\cap_{q\in\mathbf{Q}}E_q$,

$$\overline{\lim_{r \to 0}} \frac{1}{m_n(B(x,r))} \int_{B(x,r)} |f(y) - f(x)| \, dy \le 2 |f(x) - q|$$

for all rational numbers q and it follows that $m_n(L_f^c) = 0$.

A family $\mathcal{E}_{x,\alpha} = (E_{x,r})_{r>0}$ of Borel sets in \mathbb{R}^n is said to shrink nicely to a point x in \mathbb{R}^n if $E_{x,r} \subseteq B(x,r)$ for each r and there is a positive constant α , independent of r, such that $m_n(E_{x,r}) \ge \alpha m_n(B(x,r))$.

16

Theorem 5.3.3. (The Lebesgue Differentiation Theorem) Suppose $f \in L^1_{loc}(m_n)$ and $x \in L_f$. Then

$$\lim_{r \to 0} \frac{1}{m_n(E_{x,r})} \int_{E_{x,r}} |f(y) - f(x)| \, dy = 0$$

and

$$\lim_{r \to 0} \frac{1}{m_n(E_{x,r})} \int_{E_{x,r}} f(y) dy = f(x).$$

PROOF. The result follows from the inequality

$$\frac{1}{m_n(E_{x,r})} \int_{E_{x,r}} |f(y) - f(x)| \, dy \le \frac{1}{\alpha m_n(B(x,r))} \int_{B(x,r)} |f(y) - f(x)| \, dy.$$

Theorem 5.3.4. Suppose λ is a real or positive measure on \mathcal{R}_n and suppose $\lambda \perp v_n$. If λ is a positive measure it is assumed that $\lambda(K) < \infty$ for every compact subset of \mathbf{R}^n . Then

$$\lim_{r \to 0} \frac{\lambda(E_{x,r})}{v_n(E_{x,r})} = 0 \text{ a.e. } [v_n]$$

If $E_{x,r} = B(x,r)$ and λ is the counting measure $c_{\mathbf{Q}^n}$ restricted to \mathcal{R}_n then $\lambda \perp v_n$ but the limit in Theorem 5.3.4 equals plus infinity for all $x \in \mathbf{R}^n$. The hypothesis " $\lambda(K) < \infty$ for every compact subset of \mathbf{R}^n " in Theorem 5.3.4 is not superflous.

PROOF. Since $|\lambda(E)| \leq |\lambda| (E)$ if $E \in \mathcal{R}_n$, there is no restriction to assume that λ is a positive measure (cf. Theorem 3.1.4). Moreover, since

$$\frac{\lambda(E_{x,r})}{v_n(E_{x,r})} \le \frac{\lambda(B(x,r))}{\alpha v_n(B(x,r))}$$

it can be assumed that $E_{x,r} = B(x,r)$. Note that the function $\lambda(B(\cdot,r))$ is Borel measurable for fixed r > 0 and $\lambda(B(x,\cdot))$ left continuous for fixed $x \in \mathbf{R}^n$.

$$F = \left\{ x \in A; \ \overline{\lim_{r \to 0}} \frac{\lambda(B(x,r))}{m_n(B(x,r))} > \delta \right\}$$

To this end let $\varepsilon > 0$ and use Theorem 3.1.3 to get an open $U \supseteq A$ such that $\lambda(U) < \varepsilon$. For each $x \in F$ there is an open ball $B_x \subseteq U$ such that

$$\lambda(B_x) > \delta v_n(B_x).$$

If $V = \bigcup_{x \in F} B_x$ and $c < v_n(V)$ we use Lemma 5.3.1 to obtain $x_1, ..., x_k$ such that $B_{x_1}, ..., B_{x_k}$ are pairwise disjoint and

$$c < 3^n \Sigma_{i=1}^k v_n(B_{x_i}) < 3^n \delta^{-1} \Sigma_{i=1}^k \lambda(B_{x_i})$$
$$\leq 3^n \delta^{-1} \lambda(U) < 3^n \delta^{-1} \varepsilon.$$

Thus $v_n(V) \leq 3^n \delta^{-1} \varepsilon$. Since $V \supseteq F \in \mathcal{R}_n$ and $\varepsilon > 0$ is arbitrary, $v_n(F) = 0$ and the theorem is proved.

Corollary 5.3.1. Suppose $F : \mathbf{R} \to \mathbf{R}$ is an increasing function. Then F'(x) exists for almost all x with respect to linear measure.

PROOF. Let D be the set of all points of discontinuity of F. Suppose $-\infty < a < b < \infty$ and $\varepsilon > 0$. If $a < x_1 < ... < x_n < b$, where $x_1, ..., x_n \in D$ and

$$F(x_k+) - F(x_k-) \ge \varepsilon, \ k = 1, ..., n$$

then

$$n\varepsilon \le \sum_{k=1}^{n} (F(x_k+) - F(x_k-)) \le F(b) - F(a)$$

Thus $D \cap [a, b]$ is at most denumerable and it follows that D is at most denumerable. Set H(x) = F(x+) - F(x), $x \in \mathbf{R}$, and let $(x_j)_{j=0}^N$ be an enumeration of the members of the set $\{H > 0\}$. Moreover, for any a > 0,

$$\sum_{|x_j| < a} H(x_j) \le \sum_{|x_j| < a} (F(x_j+) - F(x_j-))$$
$$\le F(a) - F(-a) < \infty.$$

18

Now, if we introduce

$$\nu(A) = \Sigma_1^N H(x_j) \delta_{x_j}(A), \ A \in \mathcal{R}$$

then ν is a positive measure such that $\nu(K) < \infty$ for each compact subset K of **R**. Furthermore, if h is a non-zero real number,

$$\left|\frac{1}{h}(H(x+h) - H(x))\right| \le \frac{1}{h}(H(x+h) + H(x)) \le 4\frac{1}{4|h|}\nu(B(x,2|h|))$$

and Theorem 5.3.4 implies that H'(x) = 0 a.e. $[v_1]$. Therefore, without loss of generality it may be assumed that F is right continuous and, in addition, there is no restriction to assume that $F(+\infty) - F(-\infty) < \infty$.

By Section 1.6 F induces a finite positive Borel measure μ such that

$$\mu(]x, y]) = F(y) - F(x)$$
 if $x < y$.

Now consider the Lebesgue decomposition

$$d\mu = f dv_1 + d\lambda$$

where $f \in L^1(v_1)$ and $\lambda \perp v_1$. If x < y,

$$F(y) - F(x) = \int_{x}^{y} f(t)dt + \lambda(]x, y])$$

and the previous two theorems imply that

$$\lim_{y \downarrow x} \frac{F(y) - F(x)}{y - x} = f(x) \text{ a.e. } [v_1]$$

If y < x,

$$F(x) - F(y) = \int_{y}^{x} f(t)dt + \lambda(]y, x])$$

and we get

$$\lim_{y \uparrow x} \frac{F(y) - F(x)}{y - x} = f(x) \text{ a.e. } [v_1].$$

The theorem is proved.

Exercises

1. Suppose $F : \mathbf{R} \to \mathbf{R}$ is increasing and let $f \in L^1_{loc}(v_1)$ be such that F'(x) = f(x) a.e. $[v_1]$. Prove that

$$\int_{x}^{y} f(t)dt \le F(y) - F(x) \text{ if } -\infty < x \le y < \infty.$$

5.4. Absolutely Continuous Functions and Functions of Bounded Variation

Throughout this section a and b are reals with a < b and to simplify notation we set $m_{a,b} = m_{|[a,b]}$. If $f \in L^1(m_{a,b})$ we know from the previous section that the function

$$(If)(x) =_{def} \int_{a}^{x} f(t)dt, \ a \le x \le b$$

has the derivative f(x) a.e. $[m_{a,b}]$, that is

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x) \text{ a.e. } [m_{a,b}].$$

Our next main task will be to describe the range of the linear map I.

A function $F : [a, b] \to \mathbf{R}$ is said to be absolutely continuous if to every $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$\sum_{i=1}^{n} |b_i - a_i| < \delta$$
 implies $\sum_{i=1}^{n} |F(b_i) - F(a_i)| < \varepsilon$

whenever $]a_1, b_1[, ...,]a_n, b_n[$ are disjoint open subintervals of [a, b]. It is obvious that an absolutely continuous function is continuous. It can be proved that the Cantor function is not absolutely continuous.

Theorem 5.4.1. If $f \in L^1(m_{a,b})$, then If is absolutely continuous.

PROOF. There is no restriction to assume $f \ge 0$. Set

$$d\lambda = f dm_{a,b}.$$

By Theorem 5.2.2, to every $\varepsilon > 0$ there exists a $\delta > 0$ such that $\lambda(A) < \varepsilon$ for each Lebesgue set A in [a, b] such that $m_{a,b}(A) < \delta$. Now restricting A to be a finite disjoint union of open intervals, the theorem follows.

Suppose $-\infty \leq \alpha < \beta \leq \infty$ and $F :]\alpha, \beta[\to \mathbf{R}$. For every $x \in]\alpha, \beta[$ we define

$$T_F(x) = \sup \sum_{i=1}^n |F(x_i) - F(x_{i-1})|$$

where the supremum is taken over all positive integers n and all choices $(x_i)_{i=0}^n$ such that

$$\alpha < x_0 < x_1 < \dots < x_n = x.$$

The function $T_F :]\alpha, \beta[\to [0, \infty]$ is called the total variation of F. Note that T_F is increasing. If T_F is a bounded function, F is said to be of bounded variation. A bounded increasing function on \mathbf{R} is of bounded variation. Therefore the difference of two bounded increasing functions on \mathbf{R} is of bounded variation. Interestingly enough, the converse is true. In the special case $]\alpha, \beta[$ = \mathbf{R} we write $F \in BV$ if F is of bounded variation.

Theorem 5.4.2. Suppose $F \in BV$. (a) The functions $T_F + F$ and $T_F - F$ are increasing and

$$F = \frac{1}{2}(T_F + F) - \frac{1}{2}(T_F - F).$$

In particular, F is differentiable almost everywhere with respect to linear measure.

(b) If F is right continuous, then so is T_F .

PROOF. (a) Let x < y and $\varepsilon > 0$. Choose $x_0 < x_1 < ... < x_n = x$ such that

$$\sum_{i=1}^{n} | F(x_i) - F(x_{i-1}) | \ge T_f(x) - \varepsilon.$$

Then

$$T_F(y) + F(y)$$

$$\geq \sum_{i=1}^{n} |F(x_i) - F(x_{i-1})| + |F(y) - F(x)| + (F(y) - F(x)) + F(x)$$

$$\geq T_F(x) - \varepsilon + F(x)$$

and, since $\varepsilon > 0$ is arbitrary, $T_F(y) + F(y) \ge T_F(x) + F(x)$. Hence $T_F + F$ is increasing. Finally, replacing F by -F it follows that the function $T_F - F$ is increasing.

(b) If $c \in \mathbf{R}$ and x > c,

$$T_f(x) = T_F(c) + \sup \sum_{i=1}^n |F(x_i) - F(x_{i-1})|$$

where the supremum is taken over all positive integers n and all choices $(x_i)_{i=0}^n$ such that

$$c = x_0 < x_1 < \dots < x_n = x.$$

Suppose $T_F(c+) > T_F(c)$ where $c \in \mathbf{R}$. Then there is an $\varepsilon > 0$ such that

$$T_F(x) - T_F(c) > \varepsilon$$

for all x > c. Now, since F is right continuous at the point c, for fixed x > c there exists a partition

$$c < x_{11} < \dots < x_{1n_1} = x$$

such that

$$\sum_{i=2}^{n_1} | F(x_{1i}) - F(x_{1i-1}) | > \varepsilon.$$

But

$$T_F(x_{11}) - T_F(c) > \varepsilon$$

and we get a partition

$$c < x_{21} < \dots < x_{2n_2} = x_{11}$$

such that

$$\sum_{i=2}^{n_2} | F(x_{2i}) - F(x_{2i-1}) | > \varepsilon.$$

Summing up we have got a partition of the interval $[x_{21}, x]$ with

$$\sum_{i=2}^{n_2} |F(x_{2i}) - F(x_{2i-1})| + \sum_{i=2}^{n_1} |F(x_{1i}) - F(x_{1i-1})| > 2\varepsilon.$$

22

By repeating the process the total variation of F becomes infinite, which is a contradiction. The theorem is proved.

Theorem 5.4.3. Suppose $F : [a,b] \to \mathbf{R}$ is absolutely continuous. Then there exists a unique $f \in L^1(m_{a,b})$ such that

$$F(x) = F(a) + \int_{a}^{x} f(t)dt, \ a \le x \le b.$$

In particular, the range of the map I equals the set of all real-valued absolutely continuous maps on [a, b].

PROOF. Set F(x) = F(a) if $x \le a$ and F(x) = F(b) if $x \ge b$. There exists a $\delta > 0$ such that

$$\sum_{i=1}^{n} |b_i - a_i| < \delta$$
 implies $\sum_{i=1}^{n} |F(b_i) - F(a_i)| < 1$

whenever $]a_1, b_1[, ...,]a_n, b_n[$ are disjoint subintervals of [a, b]. Let p be the least positive integer such that $a + p\delta \geq b$. Then $T_F \leq p$ and $F \in BV$. Let F = G - H, where $G = \frac{1}{2}(T_F + F)$ and $H = \frac{1}{2}(T_F - F)$. There exist finite positive Borel measures λ_G and λ_H such that

$$\lambda_G(]x,y]) = G(y) - G(x), \ x \le y$$

and

$$\lambda_H(]x,y]) = H(y) - H(x), \ x \le y.$$

If we define $\lambda = \lambda_G - \lambda_H$,

$$\lambda(]x,y]) = F(y) - F(x), \ x \le y.$$

Clearly,

$$\lambda(]x, y[) = F(y) - F(x), \ x \le y$$

since F is continuous.

Our next task will be to prove that $\lambda \ll v_1$. To this end, suppose $A \in \mathcal{R}$ and $v_1(A) = 0$. Now choose $\varepsilon > 0$ and let $\delta > 0$ be as in the definition of the absolute continuity of F on [a, b]. For each $k \in \mathbf{N}_+$ there exists an open set $V_k \supseteq A$ such that $v_1(V_k) < \delta$ and $\lim_{k\to\infty} \lambda(V_k) = \lambda(A)$. But each fixed V_k is a disjoint union of open intervals $(]a_i, b_i[)_{i=1}^{\infty}$ and hence

$$\sum_{i=1}^n \mid b_i - a_i \mid < \delta$$

for every n and, accordingly from this,

$$\sum_{i=1}^{\infty} \mid F(b_i) - F(a_i) \mid \leq \varepsilon$$

and

$$\lambda(V_k) \mid \leq \sum_{i=1}^{\infty} \mid \lambda(]a_i, b_i[) \mid \leq \varepsilon.$$

Thus $|\lambda(A)| \leq \varepsilon$ and since $\varepsilon > 0$ is arbitrary, $\lambda(A) = 0$. From this $\lambda \ll v_1$ and the theorem follows at once.

Suppose (X, \mathcal{M}, μ) is a positive measure space. From now on we write $f \in L^1(\mu)$ if there exist a $g \in \mathcal{L}^1(\mu)$ and an $A \in \mathcal{M}$ such that $A^c \in \mathcal{Z}_{\mu}$ and f(x) = g(x) for all $x \in A$. Furthermore, we define

$$\int_X f d\mu = \int_X g d\mu$$

(cf the discussion in Section 2). Note that f(x) need not be defined for every $x \in X$.

Corollary 5.4.1. A function $f : [a, b] \to \mathbf{R}$ is absolutely continuous if and only if the following conditions are true:

(i)
$$f'(x)$$
 exists for $m_{a,b}$ -almost all $x \in [a, b]$
(ii) $f' \in L^1(m_{a,b})$
(iii) $f(x) = f(a) + \int_a^x f'(t) dt$, all $x \in [a, b]$.

Exercises

1. Suppose $f: [0,1] \to \mathbf{R}$ satisfies f(0) = 0 and

$$f(x) = x^2 \sin \frac{1}{x^2}$$
 if $0 < x \le 1$.

Prove that f is differentiable everywhere but f is not absolutely continuous.

2. Suppose α is a positive real number and f a function on [0,1] such that f(0) = 0 and $f(x) = x^{\alpha} \sin \frac{1}{x}$, $0 < x \leq 1$. Prove that f is absolutely continuous if and only if $\alpha > 1$.

3. Suppose $f(x) = x \cos(\pi/x)$ if 0 < x < 2 and f(x) = 0 if $x \in \mathbb{R} \setminus [0, 2[$. Prove that f is not of bounded variation on \mathbb{R} .

4 A function $f : [a, b] \to \mathbf{R}$ is a Lipschitz function, that is there exists a positive real number C such that

$$\mid f(x) - f(y) \mid \le C \mid x - y \mid$$

for all $x, y \in [a, b]$. Show that f is absolutely continuous and $|f'(x)| \leq C$ a.e. $[m_{a,b}]$.

5. Suppose $f:[a,b] \to \mathbf{R}$ is absolutely continuous. Prove that

$$T_g(x) = \int_a^x |f'(t)| dt, \ a < x < b$$

if g is the restriction of f to the open interval [a, b].

6. Suppose f and g are real-valued absolutely continuous functions on the compact interval [a, b]. Show that the function $h = \max(f, g)$ is absolutely continuous and $h' \leq \max(f', g')$ a.e. $[m_{a,b}]$.

 $\downarrow \downarrow \downarrow \downarrow$

5.5. Conditional Expectation

Let (Ω, \mathcal{F}, P) be a probability space and suppose $\xi \in L^1(P)$. Moreover, suppose $\mathcal{G} \subseteq \mathcal{F}$ is a σ -algebra and set

$$\mu(A) = P[A], \ A \in \mathcal{G}$$

and

$$\lambda(A) = \int_A \xi dP, \ A \in \mathcal{G}.$$

It is trivial that $\mathcal{Z}_{\mu} = \mathcal{Z}_P \cap \mathcal{G} \subseteq \mathcal{Z}_{\lambda}$ and the Radon-Nikodym Theorem shows there exists a unique $\eta \in L^1(\mu)$ such that

$$\lambda(A) = \int_A \eta d\mu \text{ all } A \in \mathcal{G}$$

or, what amounts to the same thing,

$$\int_{A} \xi dP = \int_{A} \eta dP \text{ all } A \in \mathcal{G}.$$

Note that η is $(\mathcal{G}, \mathcal{R})$ -measurable. The random variable η is called the conditional expectation of ξ given \mathcal{G} and it is standard to write $\eta = E [\xi | \mathcal{G}]$.

A sequence of σ -algebras $(\mathcal{F}_n)_{n=1}^{\infty}$ is called a filtration if

$$\mathcal{F}_n \subseteq \mathcal{F}_{n+1} \subseteq \mathcal{F}.$$

If $(\mathcal{F}_n)_{n=1}^{\infty}$ is a filtration and $(\xi_n)_{n=1}^{\infty}$ is a sequence of real valued random variables such that for each n,

(a) $\xi_n \in L^1(P)$ (b) ξ_n is $(\mathcal{F}_n, \mathcal{R})$ -measurable (c) $E\left[\xi_{n+1} \mid \mathcal{F}_n\right] = \xi_n$

then $(\xi_n, \mathcal{F}_n)_{n=1}^{\infty}$ is called a martingale. There are very nice connections between martingales and the theory of differentiation (see e.g Billingsley [B] and Malliavin [M]).