CHAPTER 5
DECOMPOSITION OF MEASURES

Introduction

In this section a version of the fundamental theorem of calculus for Lebesgue
integrals will be proved. Moreover, the concept of differentiating a measure
with respect to another measure will be developped. A very important result
in this chapter is the so called Radon-Nikodym Theorem.

5.1. Complex Measures

Let (X, M) be a measurable space. Recall that if A, C X, n € N,, and
A;NA; =¢if i # j, the sequence (A4, )nen, is called a disjoint denumerable
collection. The collection is called a measurable partition of A if A =UX A,
and A, € M for every n € N,.

A complex function p on M is called a complex measure if

p(A) =372 u(An)

for every A € M and measurable partition (A,)22 ; of A. Note that p(¢) =0

if ;4 is a complex measure. A complex measure is said to be a real measure

if it is a real function. The reader should note that a positive measure need

not be a real measure since infinity is not a real number. If p is a complex

measure (i = [, + iy, , Where up, =Re p and p,, =Im p are real measures.
If (X, M, p) is a positive measure and f € L'(u) it follows that

/\(A):/Afdu, Ae M

is a real measure and we write d\ = fdpu.



A function p : M — [—00, 0] is called a signed measure measure if

(a) p: M —]—00,00] or pu: M — [—o0,00]
(b) u(¢) =0

(c) for every A € M and measurable partition (A,)3 ; of A,

p(A) = 5521 1(An)
where the latter sum converges absolutely if u(A) € R.

Here —00 — 00 = —o0 and —o0 + 2 = —o0 if x € R. The sum of a
positive measure and a real measure and the difference of a real measure and
a positive measure are examples of signed measures and it can be proved that
there are no other signed measures (see Folland [F]). Below we concentrate
on positive, real, and complex measures and will not say more about signed
measures here.

Suppose 4 is a complex measure on M and define for every A € M

[ 1| (A) = sup 222, [ p(An) |,

where the supremum is taken over all measurable partitions (A,)s, of A.
Note that | i | (¢) =0 and

| i| (A) > w(B) | if A, B Mand AD B.

The set function | p | is called the total variation of 1 or the total variation
measure of p. It turns out that | p | is a positive measure. In fact, as will
shortly be seen, | i | is a finite positive measure.

Theorem 5.1.1. The total variation | i1 | of a complex measure is a positive
measure.

PROOF. Let (A,)2, be a measurable partition of A.



For each n, suppose a,, <| p | (Ay) and let (Fk,)52; be a measurable
partition of A, such that

an < 332 | p(Ekn) | -
Since (Egn)35,=; is a partition of A it follows that
Se1tn < Xy | 1(Ekn) [<[ 1| (A).
Thus

Yoty | (An) <[ | (A).

To prove the opposite inequality, let (Ej)?° ; be a measurable partition of
A. Then, since (A, N Ey), is a measurable partition of Fy and (A, N EL)%,
a measurable partition of A,

Yo | u(Er) |= DDty | E;:O:lM(An N Ey) |

< o | p(An N E) [S 308 [ ] (An)
and we get
[ (A) <502 [ ] (An).
Thus
| [ (A) =552 [ | (An).

Since | | (¢) = 0, the theorem is proved.

Theorem 5.1.2. The total variation | i | of a complex measure 11 is a finite
positive measure.

PROOF. Since
| 1 <] pge |+ | pg |

there is no loss of generality to assume that p is a real measure.
Suppose | | (E) = oo for some E € M. We first prove that there exist
disjoint sets A, B € M such that

AUuB=F



and
| w(A) [>Tand | p|(B) = oo.

To this end let ¢ = 2(1+ | u(E) |) and let (Ej)2, be a measurable partition
of E such that
ot | n(ER) [> ¢

for some sufficiently large n. There exists a subset N of {1,...,n} such that

c
| Skenp(Er) |> 3
Set A =UgenyEr and B = E'\ A. Then | u(A) |[> £ > 1 and

<
2

>| u(A) | = | W(E) |> 5= | u(B) |= 1

Since co =| p | (E) =| p | (A)+ | i | (B) we have | pn | (A) = oo or
| w| (B) = o00. If | p| (B) < oo we interchange A and B and have
| p(A) [> Tand [ p | (B) = oo

Suppose | p | (X) = 00. Set Ey = X and choose disjoint sets Ay, By € M
such that
Ao U B() = EQ
and

| 1(Ag) > L and | u| (Bo) = ox.
Set E1 = By and choose disjoint sets A, B; € M such that

A1U81:E1

and
| (A1) [>T and | p| (Bi) = oo.

By induction, we find a measurable partition (A,)32, of the set A =4
Ux ,A, such that | u(A4,) |> 1 for every n. Now, since u is a complex

measure,

H(A) = B2 ou(A,).
But this series cannot converge, since the general term does not tend to zero
as n — o0o. This contradiction shows that | i | is a finite positive measure.



If 1 is a real measure we define
L1
pr=gel+a)
and

poo= %(I | —p).

The measures p+ and p~ are finite positive measures and are called the
positive and negative variations of u, respectively . The representation

po=pt—p

is called the Jordan decomposition of .

Exercises

1. Suppose (X, M, pu) is a positive measure space and d\ = fdu, where
f € L'(u). Prove that d | X |=| f | du.

2. Suppose A, i, and v are real measures defined on the same o-algebra and
A < pand A < v. Prove that

A < min(p, v)

where

. 1
min(n,v) = S(u+v— | p—v )

3. Suppose i : M — C is a complex measure and f,g: X — R measurable
functions. Show that

| u(f € A)—pulge A) ISl (f#9)

for every A € R.



5.2. The Lebesque Decomposition and the Radon-Nikodym Theo-
rem

Let p be a positive measure on M and A\ a positive or complex measure
on M. The measure ) is said to be absolutely continuous with respect to u
(abbreviated A << p) if A(A) = 0 for every A € M for which u(A) = 0. If

we define

2, = {A e M; \A) =0}

it follows that A << p if and only if
Z,C 2.

For example, v, << v, and v, <<,

The measure \ is said to be concentrated on E € M if A = \¥ | where
MNP(A) =gep ME N A) for every A € M. This is equivalent to the hypoth-
esis that A € Z, if A € M and ANFE = ¢. Thus if Ey, E; € M, where
E, C Es, and A is concentrated on £y, then A is concentrated on E5. More-
over, if Fi,Ey € M and ) is concentrated on both F; and FE,, then \ is
concentrated on E; N Es. Two measures A\; and A\, are said to be mutually
singular (abbreviated A; L Ag) if there exist disjoint measurable sets F; and
E5 such that \; is concentrated on E; and A5 is concentrated on E.

Theorem 5.2.1. Let pu be a positive measure and X\, Ay, and Ay complex
MEAsuTes.

(i) If M1 << p and Ay << p, then (aq A + aghg) << p for all complex
numbers oy and ao.

(i) If My L pand Ay L pu, then (canAy + aghy) L p for all complex
numbers oy and ao.

(iii) If A << p and X L p, then A =0.

(iv) If A << p, then | A |<< p.

PROOF. The properties (i) and (ii) are simple to prove and are left as exer-
cises.



To prove (iii) suppose E € M is a p-null set and A = \¥. If A € M, then
AMA) = AMANE)and AN E is a p-null set. Since A << p it follows that
ANE € Z, and, hence, A\(A) = A(AN E) = 0. This proves (iii)

To prove (iv) suppose A € M and pu(A) = 0. If (A,,)5°, is measurable
partition of A, then pu(A,) = 0 for every n. Since A << pu, A\(A,) = 0 for
every n and we conclude that | A | (A) = 0. This proves (vi).

Theorem 5.2.2. Let i be a positive measure on M and A a complex measure
on M. Then the following conditions are equivalent:

(a) A << p.

(b) To every € > 0 there corresponds a 6 > 0 such that | \(E) |< € for
all E € M with u(E) < 6.

If \ is a positive measure, the implication (a) = (b) in Theorem 5.2.2 is,
in general, wrong. To see this take y = v; and A = v;. Then A << p and if
we choose A,, = [n,00[, n € N, then p(A,) — 0asn — oo but A(A4,) = 0o
for each n.

PROOF. (a)=(b). If (b) is wrong there exist an ¢ > 0 and sets E, € M,
n € N, such that | A\(E,) |> € and p(E,) < 27" Set

A, =Up Eyand A=N7" A,

Since A, 2 A,y 2 A and p(A4,) < 27" it follows that u(A) = 0 and
using that | A | (A,) >| AM(E,) |, Theorem 1.1.2 (f) implies that

[ AL (A) = Tim [ A](4,) > €.

This contradicts that | A |<< p.

(b)=(a). If £ € M and u(F) = 0 then to each ¢ > 0, | \(E) |< ¢, and we
conclude that A(F) = 0. The theorem is proved.



Theorem 5.2.3. Let p be a o-finite positive measure and \ a real measure
on M.

(a) (The Lebesgue Decomposition of \) There exists a unique pair
of real measures \, and \s onM such that

A=A+ A5, Ag << p, and Ag L p.

If X\ is a finite positive measure, A, and \; are finite positive measures.
(b) (The Radon-Nikodym Theorem) There exits a unique g € L'(p)
such that
d\, = gdp.

If X is a finite positive measure, g > 0 a.e. [p].
The proof of Theorem 5.2.3 is based on the following

Lemma 5.2.1. Let (X, M, p) be a finite positive measure space and suppose
fe L (n).
(a) If a € R and

/ fdp < au(E), all E € M
E

then f < a a.e. [p].
(b) If b€ R and

[Efdu > bu(E), all E € M
then f > b a.e. [p].
PROOF. (a) Set g = f — a so that
/Egd;zSO, all E e M.

Now choose E = {g > 0} to obtain

Oz/gdu=/ngdu20
E X



as xXpg > 0 a.e. [p]. But then Example 2.1.2 yields xpg = 0 a.e. [u] and we
get £ € Z,. Thus g <0 ae. [u|or f <aae [u.

Part (b) follows in a similar way as Part (a) and the proof is omitted
here.

PROOF. Uniqueness: (a) Suppose A¥) and A% are real measures on M such
that
A= )\(k)—l—A )\ ) << p, and)\ L

for k =1,2. Then
AL @) — (@) _ @)

s

and

—

AW A <<y and A

Thus by applying Theorem 5.2.1, )\((11) — A
we conclude that )\gl) = /\L(f) .
(b) Suppose gr € L' (i), k = 1,2, and

Do\ |,

a

2 =0 and AV = \?_ From this

S

—~

S}

dAo = grdp = gadp.
Then hdp = 0 where h = g; — g». But then

/ hdp =0
{h>0}

and it follows that h < 0 a.e. [u]. In a similar way we prove that h > 0 a.e.
[4]. Thus h =0 in L'(u), that is g3 = go in L'(u).

Existence: The beautiful proof that follows is due to von Neumann.
First suppose that p and A are finite positive measures and set v = A+ p.
Clearly, L*(\) D L'(v) D L?*(v). Moreover, if f : X — R is measurable

/|f\d)\</ |f\du<m\/y—

and from this we conclude that the map

f—>/deA
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is a continuous linear functional on L?(v). Therefore, in view of Theorem
4.2.2, there exists a g € L?(v) such that

/ fdA :/ fgdv all f e L*(v).
X X

Suppose E € M and put f = xp to obtain
0<\E)= / gdv
E

and, since v > A,
0< / gdv < v(E).
E

But then Lemma 5.2.1 implies that 0 < g < 1 a.e. [v]. Therefore, without
loss of generality we can assume that 0 < g(z) < 1 for all x € X and, in
addition, as above

/de)\ = /ngdy all f € L*(v)

that is
/ f(l—g)dX = / fgdp all f € L*(v).
X X

Put A={0<g<1},S={g=1}, \s = \*, and )\, = \%. Note that
A =M+ )% The choice f = xg gives ;1(S) = 0 and hence A, L . Moreover,
the choice

f=0+. . +3g")xp
where £/ € M, gives

/E(l — g™ dX = /E(1 + o g gdp.

By letting n — oo and using monotone convergence

MEN A) = / hj.

E

where
h=lim(1+..4g¢")g.

n—oo
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Since h is non-negative and

AA) = /X hdp

it follows that h € L*(p). Moreover, the construction above shows that A =
Ao+ As.

In the next step we assume that p is a o-finite positive measure and A
a finite positive measure. Let (X,,)?°, be a measurable partition of X such
that u(X,) < oo for every n. Let n be fixed and apply Part (a) to the pair

15 and A" to obtain finite positive measures (A*"), and (A*"), such that

A= (W) + (W), (W), << i, and (A7), L g

and
AN )y = hpdp™ (or (M) = hpp™™)

where 0 < h,, € L'(p*"). Without loss of generality we can assume that
h, = 0 off X,, and that ()\X")s is concentrated on A, C X,, where A, € Z,,.
In particular, (\*"), = h,u. Now

A= D+ 202, (),

where
h =3 hy

and
/ hdp < A(X) < oo.
X

Thus h € L*(i). Moreover, A\, =45 252, (A*"), is concentrated on U | A, €
Z,. Hence Ay L p.

Finally if A is a real measure we apply what we have already proved to
the positive and negative variations of A\ and we are done.

Example 5.2.1. Let A be Lebesgue measure in the unit interval and p the
counting measure in the unit interval restricted to the class of all Lebesgue
measurable subsets of the unit interval. Clearly, A\ << p. Suppose there is an
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h € L*(u) such that d\ = hdu. We can assume that A > 0 and the Markov
inequality implies that the set {h > €} is finite for every ¢ > 0. But then

Ah€]0,1]) = lim A(h>2") =0

n—oo

and it follows that 1 = A\(h = 0) = |, (h=oy My = 0, which is a contradiction.

Corollary 5.2.1. Suppose p is a real measure. Then there exists
he L' nl)
such that | h(z) |=1 for all x € X and

dp=hd | .

PROOF. Since | pu(A) |<| 1 | (A) for every A € M, the Radon-Nikodym
Theorem implies that dy = hd | u | for an appropriate h € L(] u |). But
then d | u|=| h|d| u| (see Exercise 1 in Chapter 5.1). Thus

IMI(E)Z/!hIdIMI, all F € M
E

and Lemma 5.2.1 yields h = 1 a.e. [| £ |]. From this the theorem follows at
once.

Theorem 5.2.4. (Hahn’s Decomposition Theorem) Suppose 1 is a
real measure. There exists an A € M such that

pt=ptand pm = —pt.

PROOF. Let du = hd | p | where | h |= 1. Note that hdy = d | u | . Set
A ={h=1}. Then

1 1
dut = S(d | p| +dp) = 5(h + 1dp = xadp
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and
dp~ =dp" —dp = (x4 — )dp = —x scdp.

The theorem is proved.

If a real measure A is absolutely continuous with respect to a o-finite
positive measure p, the Radon-Nikodym Theorem says that d\ = fdu for an
approprite f € L*(u). We sometimes write

_dA

I=a

and call f the Radon-Nikodym derivate of A\ with respect to p.

Exercises

1. Suppose p and v,,n €N, are positive measures defined on the same
o-algebra and set 0 = ¥°° jv,,. Prove that

a) 0 L pifv, Ly, allneN.

b) 0 << pifv, << p,alneN.

2. Suppose u is a real measure and u = A; — Ay, where \; and )\, are finite
positive measures. Prove that Ay > p* and Ay > p™.

3. Let A\; and Ay be mutually singular complex measures on the same o-
algebra. Show that | Ay |L]| Az | .

4. Let (X, M, ) be a o-finite positive measure space and suppose A and 7
are two probability measures defined on the o-algebra M such that A << pu
and 7 << pu. Prove that

sup | AM(4) — (A4 :—/ — — — | du.
sup [ A(4) = (4) = 5 [ 152 =50 1du
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5.3. The Wiener Maximal Theorem and the Lebesgue Differentia-
tion Theorem

We say that a Lebesgue measurable function f in R" is locally Lebesgue in-
tegrable and belongs to the class L. .(m,) if fx; € L'(m,) for each compact

loc

subset K of R". In a similar way f € L] (v,) if f is a Borel function such

that fxx € L'(v,) for each compact subset K of R™ If f € L}, .(m,), we
define the average A, f(x) of f on the open ball B(z,r) as

1
Af(e) = s /B Ty

It follows from dominated convergence that the map (z,r) — A, f(x) of
R" x ]0, 00 into R is continuous. The Hardy-Littlewood maximal function
f* is, by definition, f* =sup,.oA, | f | or, stated more explicitly,

* = su —1
F) = B )

The function f*: (R™, B(R")) — (]0,00],Ro.«) is measurable since
fr=supA, | 1.

r>0
reQ

| i@y ce R
B(z,r)

Theorem 5.3.1. (Wiener’s Maximal Theorem) There exists a positive
constant C' = C,, < oo such that for all f € L*(m,),

mn(f*>a)§§||fﬂlifa>0.

The proof of the Wiener Maximal Theorem is based on the following
remarkable result.

Lemma 5.3.1. Let C be a collection of open balls in R™ and set V = UpgeeB.
If ¢ <m,(V) there exist pairwise disjoint By, ..., By € C such that

¥ ma(B;) >3 "c.
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PROOF. Let K C V be compact with m,,(K) > ¢, and suppose A4y, ..., A, € C
cover K. Let By be the largest of the Als (that is, B; has maximal radius),
let By be the largest of the Als which are disjoint from By, let B3 be the
largest of the A’s which are disjoint from B; U Bs, and so on until the process
stops after k steps. If B; = B(x;,r;) put Bf = B(x;,3r;). Then UF_ B D K
and

c < YF m,(B}) =3"SF m,(B)).

The lemma is proved.

PROOF OF THEOREM 5.3.1. Set
Eo={f">a}.

For each x € E, choose an r, > 0 such that A, | f | (z) > a. If c < my,(E,),
by Lemma 5.3.1 there exist 21, ...,z € E, such that the balls B; = B(x;,r,,),
1 =1, ..., k, are mutually disjoint and

YE m,(B;) > 3 "c.

But then

3n 3n
¢ < 3"EL m,(B;) < —Efl/ [ fW) | dy <= [ |f(y)|dy.
a Bz Oé Rn

The theorem is proved.

Theorem 5.3.2. If f € L} _(m,),

1
lim ————— dy = f(x) a.e. |m,].
/B Wy = 1@ ae.

r—0 my(B(z,7))
PROOF. Clearly, there is no loss of generality to assume that f € L'(m,,).
Suppose g € C.(R™) =4 {f € C(R™); f(x) =01if | x| large enough}. Then

lim A,¢g(z) = g(z) all z € R".

r—0
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Since A, f — f=A(f—9)—(f—9)+Ag—y,
lim [ A f —fI<(f=9)+|f—gl.
Now, for fixed a > 0, L
my(lim [ A, f = f > a)

<ma((f =9 > 5) +mall f =9[> 3)

and the Wiener Maximal Theorem and the Markov Inequality give
mo(m | A, — f > a)

2C 2
<+ gl

Remembering that C.(R™) is dense in L'(m,,), the theorem follows at once.

If f € L},.(m,) we define the so called Lebesgue set L; to be

loc

|
L=<z lim ——— — f(x d:(]}.
=1 IR IE

r—0 my(B(z,7))
Note that if ¢ is real and

B={oi by [ ) —a = o) -

then mn(ququ) - 0 If T € ﬂquEq,

— 1
s [ 1)~ 1) [y < 2] fle) ~ ]
r—0 mn(B(x, T)) B(z,r)
for all rational numbers ¢ and it follows that m,,(L$) = 0.
A family &, , = (E.,)r>0 of Borel sets in R™ is said to shrink nicely to a
point z in R™ if £, , C B(x,r) for each r and there is a positive constant «,
independent of r, such that m,(E,,) > am,(B(x,r)).
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Theorem 5.3.3. (The Lebesgue Differentiation Theorem) Suppose
f€Li.(my) and x € Ly. Then

loc

1
im —— — f(2) | dy =
/Ew|f<y> f(2) | dy =0

r—0 mn(Ex,r)

and
1

lim——— [ f(y)dy = f(2).

r—0 mn(Ew,r) By r

PROOF. The result follows from the inequality

1

i (Bor) | Fy) ~ f(a) | dy.

1
/Em,r | f(y) N f<x) ’ dy = ozmn(B(a:,r)) /B(w,r)

Theorem 5.3.4. Suppose A is a real or positive measure on R,, and suppose
A Lo, If Xis a positive measure it is assumed that \(K) < oo for every
compact subset of R™. Then

1 9
’"E% Un(Ez,T)

=0 a.e. [vy]

If E,, = B(x,r) and A is the counting measure cqn restricted to R,, then
A L v, but the limit in Theorem 5.3.4 equals plus infinity for all x € R". The
hypothesis " A\(K) < oo for every compact subset of R™” in Theorem 5.3.4 is
not superflous.

PROOF. Since | A(E) |[<| A | (E) if E € R, there is no restriction to assume
that A is a positive measure (cf. Theorem 3.1.4). Moreover, since

MEn) _ B
n(Eyy) — avy(B(x,r))

it can be assumed that E,, = B(z,r). Note that the function A(B(-,r))
is Borel measurable for fixed r > 0 and A(B(x,-)) left continuous for fixed
r € R™
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Suppose A € Zy and v, = (v,)4. Given § > 0, it is enough to prove that
F e Z, where
M (B, 1)
To this end let € > 0 and use Theorem 3.1.3 to get an open U O A such that
AU) < e. For each = € F there is an open ball B, C U such that
A By) > 0v,(By).

If V =UgerB, and ¢ < v,(V) we use Lemma 5.3.1 to obtain 1, ...,z such
that B,,, ..., By, are pairwise disjoint and

c<3"%F v, (B,,) < 3" 'S \B,,)

< 3"6A(U) < 30 e

Thus v, (V) < 3" 'e. Since VO F € R, and ¢ > 0 is arbitrary, v,(F) =0
and the theorem is proved.

Corollary 5.3.1. Suppose F' : R —R is an increasing function. Then F'(z)
exists for almost all x with respect to linear measure.

PROOF. Let D be the set of all points of discontinuity of F. Suppose —oco <
a<b<ooande>0.Ifa<z <..<uz, <b, where z1,...,x, € D and

F(zp+) — Flap—) > ¢, k=1,...,n
then
ne < Xp_, (F(xp+) — Fx—)) < F(b) — F(a).

Thus D N [a,b] is at most denumerable and it follows that D is at most
denumerable. Set H(x) = F(z+) — F(z), = € R, and let (z;)}y be an
enumeration of the members of the set { H > 0} . Moreover, for any a > 0,

> H(z) < Y (Flaj+) — Flaz;—))

lzj|<a lzj|<a

< F(a) — F(—a) < oo.
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Now, if we introduce
v(A) = EjlvH(xj)éxj(A), AeR

then v is a positive measure such that v(K) < oo for each compact subset
K of R. Furthermore, if h is a non-zero real number,

1
Afh]

(H(z+h) — H(z) |< %(H(x—i—h)%—H(m))Sél v(B(z,2 | k)

| 1

h

and Theorem 5.3.4 implies that H'(z) = 0 a.e. [v1]. Therefore, without loss
of generality it may be assumed that F' is right continuous and, in addition,

there is no restriction to assume that F'(+o00) — F'(—o0) < oo.
By Section 1.6 F' induces a finite positive Borel measure ;2 such that

n(lz,y]) = Fly) — F(z) if z <y.
Now consider the Lebesgue decomposition
dp = fdvy + dX
where f € L*(v1) and A L vy. If z < g,

ﬂw—mmz/ﬁwﬁ+maw

and the previous two theorems imply that

. Fy) - F(x) _
lylgvly_—x = f(z) a.e. [vq]
Ify<ua,
F(a) = Fy) = | 7t)de+ My.z)
and we get
. Fy) - F(z) _
lylﬁ}y——x = f(x) a.e. [v1].

The theorem is proved.

Exercises
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1. Suppose F' : R — R is increasing and let f € L} (v;) be such that
F'(z) = f(x) a.e. [v1]. Prove that

/yf(t)dtSF(y)—F(a:) if —oco < <y<oo.

5.4. Absolutely Continuous Functions and Functions of Bounded
Variation

Throughout this section a and b are reals with a < b and to simplify notation
we set Mg = M. If f € L*(m,) we know from the previous section that
the function

(Lf) (%) =ges /z ft)dt, a<x<b

has the derivative f(z) a.e. [mgp], that is

& [ st = s ac. ma.

Our next main task will be to describe the range of the linear map I.
A function F' : [a,b] — R is said to be absolutely continuous if to every
e > 0 there exists a > 0 such that

Z?:l | bz — a; |< ) 1mphes E?:l | F(bz> — F(CLZ) |< £

whenever |ay, by[, ...,]a,, b,| are disjoint open subintervals of [a, b]. Tt is ob-
vious that an absolutely continuous function is continuous. It can be proved
that the Cantor function is not absolutely continuous.

Theorem 5.4.1. If f € L'(myy), then If is absolutely continuous.

PROOQOF. There is no restriction to assume f > 0. Set

A\ = fdmay.
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By Theorem 5.2.2, to every € > 0 there exists a 6 > 0 such that A\(4) < e
for each Lebesgue set A in [a, b] such that m,;(A) < . Now restricting A to
be a finite disjoint union of open intervals, the theorem follows.

Suppose —o00 < a < f < oo and F': |a, B[ — R. For every = € |a, 5] we
define
Tp(x) =supZi, | F(x;) — F(zi-1) |

where the supremum is taken over all positive integers n and all choices
(x;)™ o such that
a< < <.<x, =2.

The function Tr : o, 8] — [0, 00] is called the total variation of F. Note that
Tr is increasing. If T is a bounded function, F' is said to be of bounded varia-
tion. A bounded increasing function on R is of bounded variation. Therefore
the difference of two bounded increasing functions on R is of bounded vari-
ation. Interestingly enough, the converse is true. In the special case |a, f] =
R we write F' € BV if F' is of bounded variation.

Theorem 5.4.2. Suppose F' € BV.
(a) The functions Tp + F and Tr — F are increasing and

1 1

In particular, F is differentiable almost everywhere with respect to linear
measure.
(b) If F is right continuous, then so is Tp.

PROOF. (a) Let 2 < y and € > 0. Choose z¢ < 1 < ... < 2, = x such that
Ny | Fx) = Fzia) |= Ty(x) —e.

Then
Tr(y) + F(y)
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> XLy | @) = Fzia) | + [ Fly) = Fz) | +(F(y) = F(2)) + F(x)
> Tp(z) —e+ F(x)

and, since € > 0 is arbitrary, Tr(y) + F(y) > Tr(z) + F(z). Hence Tr + F' is
increasing. Finally, replacing F' by —F' it follows that the function Tp — F
is increasing.

(b)If ce R and z > ¢,
Ty(x) = Tr(c) +sup Sy | Fl) — Fli ) |

where the supremum is taken over all positive integers n and all choices
(x;), such that
C=Tro< 1 <..<xTp =2

Suppose Tr(c+) > Tp(c) where ¢ € R. Then there is an € > 0 such that
TF($) — TF(C) > €

for all z > ¢. Now, since F' is right continuous at the point ¢, for fixed z > ¢
there exists a partition

< <...<ZT1p; =T

such that
2?212 ‘ F(.%’lz) — F(xli—l) ‘> E.

But
TF<I11) — TF(C) > ¢

and we get a partition
C < To1 < ... < Top, = T11

such that
2?222 ‘ F(.%'QZ) — F(l’gi_l) ‘> E.

Summing up we have got a partition of the interval [xg;, x] with

Y2y | Fwg) — Fwgia) | +52, | F(71;) — F(w1-1) [> 2.
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By repeating the process the total variation of F' becomes infinite, which is
a contradiction. The theorem is proved.

Theorem 5.4.3. Suppose F' : |a,b] — R is absolutely continuous. Then
there exists a unique f € L'(m,y) such that

F(x):F(a)+/xf(t)dt, a<xz<bh.

In particular, the range of the map I equals the set of all real-valued absolutely
continuous maps on |a,b] .

PROOF. Set F(x) = F(a) if < a and F(x) = F(b) if x > b. There exists a
d > 0 such that

Y2, | by —a; |< 0 implies X1, | Fi(b;) — F(a;) |[< 1

whenever |aq,b1], ..., |an, b,[ are disjoint subintervals of [a,b]. Let p be the
least positive integer such that a + pd > b. Then Tr < p and F' € BV. Let
F =G —H, where G = 3(Tp + F) and H = (T — F). There exist finite
positive Borel measures A\g and Ay such that

Aa(lz,y]) = Gly) — G(z), v <y
and

Au(lz,y]) = H(y) — H(z), v < y.
If we define A = A\g — Ap,

Mz, yl) = Fly) — F(z), = <y.

Clearly,
Mz,y)) = Fly) = F(z), = <y

since F' is continuous.

Our next task will be to prove that A << v;. To this end, suppose A € R
and v;1(A) = 0. Now choose ¢ > 0 and let § > 0 be as in the definition of the
absolute continuity of F' on [a,b] . For each k € N, there exists an open set
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Vi O A such that v;(V}) < § and limy_ A(Vx) = A(A). But each fixed V} is
a disjoint union of open intervals (]a;, b;[)22, and hence

Z?:l | bz — a; |< )
for every n and, accordingly from this,
N2y | F(b) = Flai) |[< e

and
| A(Vi) [< 5321 | Allag, bi) [< e

Thus | A(A) |< € and since € > 0 is arbitrary, A(A) = 0. From this A << v,
and the theorem follows at once.

Suppose (X, M, 1) is a positive measure space. From now on we write
f € L' (u) if there exist a g € £'(u) and an A € M such that A° € Z,, and
f(z) = g(x) for all z € A. Furthermore, we define

/deuz/xgdu

(cf the discussion in Section 2). Note that f(x) need not be defined for every
r e X.

Corollary 5.4.1. A function f : [a,b] — R is absolutely continuous if and
only if the following conditions are true:

(1) f'(x) exists for mgp-almost all x € [a, b]

(i3) € L'(may)

(ii) f(x) = f(a)+ [ f'(t)dt, all z € [a,b].

Exercises

1. Suppose f :[0,1] — R satisfies f(0) = 0 and

1
f(z) :xQSin—2 it 0<z <1,
x
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Prove that f is differentiable everywhere but f is not absolutely continuous.

2. Suppose « is a positive real number and f a function on [0, 1] such that
f(0) = 0 and f(z) = 2*sinZ, 0 < z < 1. Prove that f is absolutely
continuous if and only if a > 1.

3. Suppose f(z) = zcos(rm/x) if 0 < z < 2 and f(z) = 0if z € R\ ]0,2].
Prove that f is not of bounded variation on R.

4 A function f : [a,b] — R is a Lipschitz function, that is there exists a
positive real number C' such that

| flx) = fy) ISC |z —y]

for all x,y € [a,b]. Show that f is absolutely continuous and | f'(z) |< C
a.e. [Mgyp) .

5. Suppose f : [a,b] — R is absolutely continuous. Prove that

Tg(x):/x|f'(t)|dt, a<z<b

if ¢ is the restriction of f to the open interval ]a, b].

6. Suppose f and g are real-valued absolutely continuous functions on the
compact interval [a,b]. Show that the function h = max(f, g) is absolutely
continuous and h' < max(f’, ¢') a.e. [mgp)-

L

5.5. Conditional Expectation
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Let (Q,F,P) be a probability space and suppose ¢ € L'(P). Moreover,
suppose G C F is a o-algebra and set

WA =P[A], Acg

and

—/gdp, Aecg.
A

It is trivial that Z, = ZpNG C Z, and the Radon-Nikodym Theorem shows
there exists a unique n € L'(p) such that

A(A) :/ndu al Aeg
A

or, what amounts to the same thing,

/fdP:/ndPallAEQ.
A A

Note that 1 is (G, R)-measurable. The random variable 7 is called the con-
ditional expectation of ¢ given G and it is standard to write n = E'[¢ | G].
A sequence of g-algebras (F,,)2, is called a filtration if

fngfnJrlgf

If ()22, is a filtration and (¢,,)32, is a sequence of real valued random
variables such that for each n,

e L'(P)
is (Fn, R)- measurable
[ n+1 | ‘,/tn]

(a)
(b)
()

I
s

Dj

then (§,,F,)%, is called a martingale. There are very nice connections
between martingales and the theory of differentiation (see e.g Billingsley [B]
and Malliavin [M]).

(k)



