CHAPTER 6
COMPLEX INTEGRATION

Introduction

In this section, in order to illustrate the power of Lebesgue integration, we
collect a few results, which often appear with uncomplete proofs at the un-
dergraduate level.

6.1. Complex Integrand

So far we have only treated integration of functions with their values in R or
[0, 00] and it is the purpose of this section to discuss integration of complex
valued functions.

Suppose (X, M, p) is a positive measure. Let f,g € L'(1). We define
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If @ and (3 are real numbers,
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We write f € L'(u; C) if Re f, Im f € L'(u) and have, for every f € L'(u; C)

and complex «,
/ ozfdu:oz/ fdu.
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Clearly, if f,g € L'(u; C), then
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Now suppose p is a complex measure on M. If

f € L' C) =40 s L (pre; ©) N LY (fig; C)
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It follows for every f,g € L'(u; C) and o € C that
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we define

and

6.2. The Fourier Transform

Below, if © = (x4, ...,x,) and y = (Y1, ..., yn) € R", we let

<ZE, y> = ZZZkayk-

and
|z |= V{z,y).

If v is a complex measure on R,, (or R, ) the Fourier transform f of 4 is
defined by

i) = [ e du(a), y e R



Note that
f1(0) = u(R").
The Fourier transform of a function f € L'(m,; C) is defined by

~

f(y) = i(y) where dp = fdm,,.

Theorem 6.2.1. The canonical Gaussian measure vy, in R" has the Fourier

transform
ly|?
2

~

Yuly) =€

PROOF. Since
Vo =71 ® ... @7, (n factors)

it is enough to consider the special case n = 1. Set

~ —

1
9(y) =Ny = E /Re

Note that ¢g(0) = 1. Since

z2
2 cos zydx.

| cosz(y + h) — coszy
h

the Lebesgue Dominated Convergence Theorem yields
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(Exercise: Prove this by using Example 2.2.1). Now, by partial integration,
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that is
J(y) +yg(y) =0

and we get



If £ = (&,...,&,) is an R"-valued random variable with &, € L'(P),
k =1,...,n, the characteristic function ¢, of { is defined by

ce(y) = E [¢“V] = P(—y), y e R™
For example, if £ € N(0,0), then £ = oG, where G € N(0, 1), and we get

ce(y) = E [V = 4, (—oy)

Choosing y = 1 results in
E "] = e 2207 if € € N(0,0).

Thus if (§,)7_; is a centred real-valued Gaussian process

. 1
E [ezzkzlykgk} = eXp(—ﬁE [(Zzzl?/kgk)ﬂ

1
= exp(—5 X (6] — Drgiancayimn B [§6]).

In particular, if
E[£;6,] =0, j#k
we see that
e~ Eled]

E [eizzzlykgk} — HZ

or
E [eiEZ:kaﬁk} — HZ:1E [eiykfk] ]

Stated otherwise, the Fourier tranforms of the measures P . ¢
agree. Below we will show that complex measures in R" with the same
Fourier transforms are equal and we get the following

Theorem 6.2.2. Let (£,)7_; be a centred real-valued Gaussian process with
uncorrelated components, that is

Elg&] =0, j £k



Then the random variables &4, ..., &, are independent.

6.3 Fourier Inversion

Theorem 6.3.1. Suppose f € L'(m,). If f € L'(my,) and f is bounded
and continuous

dy

fla) = [ o fly) s e R

PROOQOF. Choose € > 0. We have
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where the right side equals
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By letting ¢ — 0 and using the Lebesgue Dominated Convergence Theorem,
Theorem 6.3.1 follows at once.

Recall that C°(R"™) denotes the class of all functions f : R" — R
with compact support which are infinitely many times differentiable. If f €
C>*(R"™) then fe LY(m,). To see this, suppose yx # 0 and use partial
integration to obtain

fo = [ e an = — [ g @y

and

f) = o [ e e, 1N
R



Thus
Ly '] f(y) < / | fD(z) | da, 1 €N
Rﬂ,

and we conclude that

sup (14 | y )" | f(y) |< oo
yeR”

and, hence, f € L'(m,,).

Corollary 6.3.1. If f € C®(R"), then f € L*(m,) and

dy

fla) = [ @ fl) gt e R

Corollary 6.3.2 If pu is a complex Borel measure in R"™ and fi = 0, then
w=0.

PROOF. Choose f € C*(R"™). We multiply the equation fi(—y) = 0 by (’;(Ty))n
and integrate over R" with respect to Lebesgue measure to obtain

- f(@)dp(x) = 0.

Since f € C°(R") is arbitrary it follows that ;1 = 0. The theorem is proved.
6.4. Non-Differentiability of Brownian Paths

Let ND denote the set of all real-valued continuous function defined on the
unit interval which are not differentiable at any point. It is well known that
ND is non-empty. In fact, if v is Wiener measure on C'[0,1], = € ND
a.e. [v]. The purpose of this section is to prove this important property of
Brownian motion.



Let W = (W(t))o<t<1 be a real-valued Brownian motion in the time
interval [0, 1] such that every path ¢t — W (t), 0 <t <1 is continuous. Recall
that

EW(®)] =0

and
E W (s)W(t)] = min(s,t).

If
0<ty<..<t,<1

and 1 <j<k<n
E{W(te) = W(te-1))(W(t;) = W(tj-1)]
= E[(W(t)W (t;)]=E [W (te)W (tj—1)]|—E [W (Lo )W (t;)|+E [W (te—1)W (t;-1)]
- tj - tj,1 - tj + tj,1 - O
From the previous section we now infer that the random variables
W(t1) = W(to), ... W(tn) — W(tn—1)
are independent.

Theorem 7. The function t — W(t), 0 <t <1 is not differentiable at
any point t € [0,1] a.s. [P].

PROOF. Without loss of generality we assume the underlying probability
space is complete. Let ¢,e > 0 and denote by B(c,¢) the set of all w € Q
such that

| W(t)—W(s)|<c|t—sl|ifte[s—e,s+eN]0,1]
for some s € [0,1]. It is enough to prove that the set
j=1k=1

is of probability zero. From now on let c¢,e > 0 be fixed. It is enough to
prove P[B(c,e)] =0 .



Set ,
X = max | W(E—=)-w(2)]

k<j<k+3 | n

for each integer n > 3 and k € {0,...,n — 3} .
Let n > 3 be so large that

We claim that

If w € B(c,¢e) there exists an s € [0, 1] such that
| W) —W(s)|<c|t—s|ifte][s—es+e]N]0,1].

Now choose k € {0, ...,n — 3} such that

{k k 3]
sE€|——+—1.
nmn n
Iftk<j<k+3,
Jj+1 J J+1 j
_ 2y < CAL —W(L
(W2 = W) W) = W(s) |+ | W(s) = (L)
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S_
n

and, hence, X, ; < %. Now

6
B(e,e) C [ min X, < —C}
0<k<n—3 n

and it is enough to prove that

lim P [ min X, < @} = 0.

n— 00 0<k<n—3 n

But



where the right side converges to zero as n — oo. The theorem is proved.

Recall that a function of bounded variation possesses a derivative a.e.
with respect to Lebesgue measure. Therefore, with probability one, a Brown-
ian path is not of bounded variation. In view of this an integral of the type

/0 F(HAW (1)

cannot be interpreted as an ordinary Stieltjes integral. Nevertheless, such
an integral can be defined by completely different means and is basic in, for
example, financial mathematics.
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