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CHAPTER 6

COMPLEX INTEGRATION

Introduction

In this section, in order to illustrate the power of Lebesgue integration, we
collect a few results, which often appear with uncomplete proofs at the un-
dergraduate level.

6.1. Complex Integrand

So far we have only treated integration of functions with their values in R or
[0;1] and it is the purpose of this section to discuss integration of complex
valued functions.
Suppose (X;M; �) is a positive measure. Let f; g 2 L1(�): We de�neZ

X

(f + ig)d� =

Z
X

fd�+ i

Z
X

gd�:

If � and � are real numbers,Z
X

(�+ i�)(f + ig)d� =

Z
X

((�f � �g) + i(�g + �f))d�

=

Z
X

(�f � �g)d�+ i
Z
X

(�g + �f)d�

= �

Z
X

fd�� �
Z
X

gd�+ i�

Z
X

gd�+ i�

Z
X

fd�

= (�+ i�)(

Z
X

fd�+ i

Z
X

gd�)

= (�+ i�)

Z
X

(f + ig)d�:
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We write f 2 L1(�;C) if Re f; Im f 2 L1(�) and have, for every f 2 L1(�;C)
and complex �; Z

X

�fd� = �

Z
X

fd�:

Clearly, if f; g 2 L1(�;C); thenZ
X

(f + g)d� =

Z
X

fd�+

Z
X

gd�:

Now suppose � is a complex measure on M: If

f 2 L1(�;C) =defL1(�Re;C) \ L1(�Im;C)

we de�ne Z
X

fd� =

Z
X

fd�Re + i

Z
X

fd�Im:

It follows for every f; g 2 L1(�;C) and � 2 C thatZ
X

�fd� = �

Z
X

fd�:

and Z
X

(f + g)d� =

Z
X

fd�+

Z
X

gd�:

###

6.2. The Fourier Transform

Below, if x = (x1; :::; xn) and y = (y1; :::; yn) 2 Rn; we let

hx; yi = �nk=1xkyk:

and
j x j=

p
hx; yi:

If � is a complex measure on Rn (or R�
n ) the Fourier transform �̂ of � is

de�ned by

�̂(y) =

Z
Rn

e�ihx;yid�(x); y 2 Rn:
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Note that
�̂(0) = �(Rn):

The Fourier transform of a function f 2 L1(mn;C) is de�ned by

f̂(y) = �̂(y) where d� = fdmn:

Theorem 6.2.1. The canonical Gaussian measure n in Rn has the Fourier
transform

̂n(y) = e
� jyj2

2 :

PROOF. Since
n = 1 
 :::
 1 (n factors)

it is enough to consider the special case n = 1: Set

g(y) = ̂1(y) =
1p
2�

Z
R

e�
x2

2 cosxydx:

Note that g(0) = 1: Since

j cosx(y + h)� cosxy
h

j�j x j

the Lebesgue Dominated Convergence Theorem yields

g0(y) =
1p
2�

Z
R

�xe�x2

2 sin xydx

(Exercise: Prove this by using Example 2.2.1). Now, by partial integration,

g0(y) =
1p
2�

h
e�

x2

2 sin xy
ix=1
x=�1

� yp
2�

Z
R

e�
x2

2 cosxydx

that is
g0(y) + yg(y) = 0

and we get

g(y) = e�
y2

2 :
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If � = (�1; :::; �n) is an Rn-valued random variable with �k 2 L1(P );
k = 1; :::; n; the characteristic function c� of � is de�ned by

c�(y) = E
�
eih�;yi

�
= P̂�(�y); y 2 Rn:

For example, if � 2 N(0; �); then � = �G; where G 2 N(0; 1); and we get

c�(y) = E
�
eihG;�yi

�
= ̂1(��y)

= e�
�2y2

2 :

Choosing y = 1 results in

E
�
ei�
�
= e�

1
2
E[�2] if � 2 N(0; �):

Thus if (�k)
n
k=1 is a centred real-valued Gaussian process

E
�
ei�

n
k=1yk�k

�
= exp(�1

2
E
�
(�nk=1yk�k)

2
�

= exp(�1
2
�nk=1y

2
kE
�
�2k
�
� �1�j<k�nyjykE

�
�j�k

�
):

In particular, if
E
�
�j�k

�
= 0; j 6= k

we see that

E
�
ei�

n
k=1yk�k

�
= �nk=1e

� y2k
2
E[�2k]

or
E
�
ei�

n
k=1yk�k

�
= �nk=1E

�
eiyk�k

�
:

Stated otherwise, the Fourier tranforms of the measures P(�1;:::;�n) and�nk=1P�k
agree. Below we will show that complex measures in Rn with the same
Fourier transforms are equal and we get the following

Theorem 6.2.2. Let (�k)nk=1 be a centred real-valued Gaussian process with
uncorrelated components, that is

E
�
�j�k

�
= 0; j 6= k:
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Then the random variables �1; :::; �n are independent.

6.3 Fourier Inversion

Theorem 6.3.1. Suppose f 2 L1(mn): If f̂ 2 L1(mn) and f is bounded
and continuous

f(x) =

Z
Rd

eihy;xif̂(y)
dy

(2�)n
; x 2 Rn:

PROOF. Choose " > 0: We haveZ
Rn

eihy;xie�
"2

2
jyj2 f̂(y)

dy

(2�)n
=

Z
Rn

f(u)

�Z
Rn

eihy;x�uie�
"2

2
jyj2 dy

(2�)n

�
du

where the right side equalsZ
Rn

f(u)

�Z
Rn

eihv;
x�u
"
ie�

1
2
jvj2 dvp

2�
n

�
dup
2�

n
"n
=

Z
Rn

f(u)e�
1
2"2

ju�xj2 dup
2�

n
"n

=

Z
Rn

f(x+ "z)e�
1
2
jzj2 dzp

2�
n :

Thus Z
Rn

eihy;xie�
"2

2
jyj2 f̂(y)

dy

(2�)n
=

Z
Rn

f(x+ "z)e�
1
2
jzj2 dzp

2�
n :

By letting "! 0 and using the Lebesgue Dominated Convergence Theorem,
Theorem 6.3.1 follows at once.

Recall that C1c (R
n) denotes the class of all functions f : Rn ! R

with compact support which are in�nitely many times di¤erentiable. If f 2
C1c (R

n) then f̂ 2 L1(mn). To see this, suppose yk 6= 0 and use partial
integration to obtain

f̂(y) =

Z
Rd

e�ihx;yif(x)dx =
1

iyk

Z
Rd

e�ihx;yif 0xk(x)dx

and

f̂(y) =
1

(iyk)l

Z
Rd

e�ihx;yif (l)xk (x)dx; l 2 N:
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Thus

j yk jlj f̂(y) j�
Z
Rn

j f (l)xk (x) j dx; l 2 N

and we conclude that

sup
y2Rn

(1+ j y j)n+1 j f̂(y) j<1:

and, hence, f̂ 2 L1(mn):

Corollary 6.3.1. If f 2 C1c (Rn); then f̂ 2 L1(mn) and

f(x) =

Z
Rn

eihy;xif̂(y)
dy

(2�)n
; x 2 Rn:

Corollary 6.3.2 If � is a complex Borel measure in Rn and �̂ = 0; then
� = 0:

PROOF. Choose f 2 C1c (Rn). We multiply the equation �̂(�y) = 0 by f̂(y)
(2�)n

and integrate over Rn with respect to Lebesgue measure to obtainZ
Rn

f(x)d�(x) = 0:

Since f 2 C1c (Rn) is arbitrary it follows that � = 0: The theorem is proved.

6.4. Non-Di¤erentiability of Brownian Paths

Let ND denote the set of all real-valued continuous function de�ned on the
unit interval which are not di¤erentiable at any point. It is well known that
ND is non-empty. In fact, if � is Wiener measure on C [0; 1], x 2 ND
a.e. [�] : The purpose of this section is to prove this important property of
Brownian motion.
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Let W = (W (t))0�t�1 be a real-valued Brownian motion in the time
interval [0; 1] such that every path t! W (t); 0 � t � 1 is continuous. Recall
that

E [W (t)] = 0

and
E [W (s)W (t)] = min(s; t):

If
0 � t0 � ::: � tn � 1

and 1 � j < k � n

E [(W (tk)�W (tk�1))(W (tj)�W (tj�1)]

= E [(W (tk)W (tj)]�E [W (tk)W (tj�1)]�E [W (tk�1)W (tj)]+E [W (tk�1)W (tj�1)]
= tj � tj�1 � tj + tj�1 = 0:

From the previous section we now infer that the random variables

W (t1)�W (t0); :::;W (tn)�W (tn�1)

are independent.

Theorem 7. The function t ! W (t); 0 � t � 1 is not di¤erentiable at
any point t 2 [0; 1] a.s. [P ] :

PROOF. Without loss of generality we assume the underlying probability
space is complete. Let c; " > 0 and denote by B(c; ") the set of all ! 2 

such that

j W (t)�W (s) j< c j t� s j if t 2 [s� "; s+ "] \ [0; 1]

for some s 2 [0; 1] : It is enough to prove that the set
1[
j=1

1[
k=1

B(j;
1

k
):

is of probability zero. From now on let c; " > 0 be �xed. It is enough to
prove P [B(c; ")] = 0 :
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Set

Xn;k = max
k�j<k+3

j W (j + 1
n
)�W ( j

n
) j

for each integer n > 3 and k 2 f0; :::; n� 3g :
Let n > 3 be so large that

3

n
� ":

We claim that

B(c; ") �
�
min

0�k�n�3
Xn;k �

6c

n

�
:

If ! 2 B(c; ") there exists an s 2 [0; 1] such that

j W (t)�W (s) j� c j t� s j if t 2 [s� "; s+ "] \ [0; 1] :

Now choose k 2 f0; :::; n� 3g such that

s 2
�
k

n
;
k

n
+
3

n

�
:

If k � j < k + 3;

j W (j + 1
n
)�W ( j

n
) j�jW (j + 1

n
)�W (s) j + j W (s)�W ( j

n
) j

� 6c

n

and, hence, Xn;k � 6c
n
: Now

B(c; ") �
�
min

0�k�n�3
Xn;k �

6c

n

�
and it is enough to prove that

lim
n!1

P

�
min

0�k�n�3
Xn;k �

6c

n

�
= 0:

But

P

�
min

0�k�n�3
Xn;k �

6c

n

�
�

n�3X
k=0

P

�
Xn;k �

6c

n

�
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= (n� 2)P
�
Xn;0 �

6c

n

�
� nP

�
Xn;0 �

6c

n

�
= n(P

�
j W ( 1

n
) j� 6c

n

�
)3 = n(P (j W (1) j� 6cp

n
)3

� n( 12cp
2�n

)3:

where the right side converges to zero as n!1. The theorem is proved.

Recall that a function of bounded variation possesses a derivative a.e.
with respect to Lebesgue measure. Therefore, with probability one, a Brown-
ian path is not of bounded variation. In view of this an integral of the typeZ 1

0

f(t)dW (t)

cannot be interpreted as an ordinary Stieltjes integral. Nevertheless, such
an integral can be de�ned by completely di¤erent means and is basic in, for
example, �nancial mathematics.

"""


