Matematiska vetenskaper CTH & GU P. Sjögren 2006

Övningar i FUNKTIONALANALYS

- 1. Consider the space $X = C^{1}[0, 1]$ of continuously differentiable functions on [0, 1] with one-sided derivatives at the endpoints. Show that X is not a Banach spaces if it is given the norm $||f|| = \sup_{[0,1]} |f|$. Cf. Folland exerc. 5.1.9 p. 155.
- 2. Let X be a normed vector space. Prove the inequality $|||x|| ||y||| \le ||x-y||$. Conclude that the norm is continuous on X, in the sense that $x_j \to x$ implies $||x_j|| \to ||x||$. Cf. Folland exerc. 5.1.1 p. 154.
- 3. Visa att ett ändligt-dimensionellt delrum av ett normerat linjärt rum är slutet. Ledning: kalla delrummet V, och anta att en följd ur V konvergerar mot någon vektor i X. Då är följden Cauchy och därför konvergent i V.
- 4. If equality holds in the triangle inequality of a normed space, do the vectors have to be parallel? More precisely, does ||x+y|| =||x|| + ||y|| imply that one of the vectors is a scalar multiple of the other? Answer the question for ℓ^1 , ℓ^2 and ℓ^{∞} .
- 5. Let $w = (w_k)$ be a sequence of positive numbers. Define a measure m_w on \mathbb{N} by placing the mass w_k at k for k = 1, 2, Then $L^p(m_w)$ is written ℓ^p_w and called weighted ℓ^p . Prove that ℓ^p_w is isometrically isomorphic with ℓ^p for $1 \le p \le \infty$.
- 6. Consider real, two-dimensional ℓ^p , which is \mathbb{R}^2 with the norm

$$||(x_1, x_2)|| = (|x_1|^p + |x_2|^p)^{1/p}, \qquad 1 \le p < \infty,$$

with the usual interpretation for $p = \infty$. Sketch the unit ball for several values of p, for instance $p = 1, 3/2, 2, 3, \infty$. For which p is the unit ball strictly convex, in the sense that $||x||, ||y|| \le 1$ and $x \ne y$ imply $||(x + y)/2|| \le 1$?

7. (Packing of balls) Place inside the unit ball of ℓ^p , $1 \le p \le \infty$, infinitely many pairwise disjoint balls having the same positive radius. Conclude that the (closed) unit ball cannot be compact (for the definition of compact, see the following problem).

Övningar i FUNKTIONALANALYS

8. Låt M vara ett fullständigt metriskt rum och K en delmängd av M. Visa att följande är ekvivalent.

(i) K är kompakt, dvs. varje öppen övertäckning av K har en ändlig delövertäckning.

(ii) K är följdkompakt, dvs. varje följd i K har en delföljd som konvergerar mot en punkt i K.

(iii) K är sluten och dessutom totalt begränsad, dvs man kan för varje r > 0 täcka K med ändligt många klot av radie r.

9. (Generalisering av övning 7) Låt X vara ett oändligtdimensionellt normerat rum.

a) Om r > 0 är litet, visa att man i enhetsklotet i X kan placera oändligt många parvis disjunkta klot av radie r. Använd t ex Follands övning 5.1.12(b) sid 156, kombinerad med övning 3 ovan.

b) Dra slutsatsen att ett klot i X aldrig är kompakt.

- 10. (Extension by continuity) Let M be a dense subspace of the normed space X. Here dense means that $\overline{M} = X$. Let Y be a Banach space. Show that any bounded linear operator T: $M \to Y$ has a unique extension to a bounded linear operator $X \to Y$.
- 11. a) Prove that $\|.\|_p$ is not a norm for 0 , using, say, Lebesgue measure in <math>[0, 1].

b) Prove that it is not even equivalent to a norm. Hint: Use characteristic functions of disjoint sets.

12. Let $1 \le p < s < r \le \infty$. Prove the inclusions

$$L^p \cap L^r \subset L^s \subset L^p + L^r.$$

The measure is arbitrary. Compare with Folland, exerc. 6.1.3,4 p. 186.

Övningar i FUNKTIONALANALYS

- 13. Consider convergence in L^p norm with $1 \le p < \infty$ and a.e. convergence, for some measure of your choice. Prove that neither implies the other.
- 14. With $1 \leq p < \infty$, assume that the function sequence f_j converges to f in L^p for some measure. Prove that there is a subsequence which converges a.e. to f.
- 15. Assume that the function g is measurable and a.e. finite, with respect to Lebesgue measure, but that $g \notin L^q$. Here $1 < q < \infty$, and we let p denote the dual exponent. Find a function $f \in L^p$ for which $fg \notin L^1$.
- 16. Prove that ℓ^{∞} and $L^{\infty}[0, 1]$ are not separable. Hint: Find an uncountable set of points, all at mutual distances at least r, for some r > 0. In the first case, cf. exercise 7.
- 17. Let *E* be the subset of ℓ^p , $1 \le p \le \infty$, consisting of all sequences with only finitely many nonzero entries. Determine the closure \overline{E} .
- 18. Translation is continuous in $L^p(\mathbb{R})$ for $1 \leq p < \infty$: If $f_t(x) = f(x-t)$ with $f \in L^p$, then $f_t \to f_{t'}$ in L^p as $t \to t'$. Prove also that this is false for $p = \infty$.
- 19. Are the normed spaces $L^p(\mathbb{R})$ and $L^p[0,1]$ isometrically isomorphic? Here $1 \leq p \leq \infty$.
- 20. For which sequences (d_k) of positive numbers is

$$\{(x_k) \in \ell^p : |x_k| \le d_k, \ k = 1, 2, \dots\}$$

a compact subset of ℓ^p ? Here $1 \le p \le \infty$. As for compactness, see problem 8.

21. The map $(s, 0) \mapsto s$ is a linear functional on the subspace $\mathbb{R} \times \{0\}$ of \mathbb{R}^2 . Determine all its linear extensions to \mathbb{R}^2 with the same norm, if \mathbb{R}^2 is given (a) the ℓ^1 norm or (b) the ℓ^∞ norm.

Övningar i FUNKTIONALANALYS

- 22. (Separable case of Hahn-Banach) Let X be a separable normed space. Assume that M is a subspace of X and that f is a linear functional defined on M and bounded with respect to the norm of X. Prove that f has an extension to a bounded linear functional on X, without using anything equivalent to the axiom of choice.
- 23. A linear subspace M of a normed space X is called a hyperplane if for some (and hence all) $x \in X \setminus M$ the subspace M and the vector x together span X. One says that the codimension of M is 1.

(a) Prove that a hyperplane is either closed or dense in X.

(b) Prove that any hyperplane is given by $M = f^{-1}(0)$ (the kernel or zero space of f) for some linear functional on X. Also show that M is closed precisely when f is continuous.

(c) If two linear functionals have the same kernel, prove that they are proportional.

- 24. Let X be a Banach space of infinite dimension. Prove that X has no countable "basis", if we let this mean that any vector can be written as a finite linear combination of vectors from the "basis".
- 25. Baire category is not related to Lebesgue measure. Find a meager subset of \mathbb{R} whose complement has measure 0. Hint: Construct open dense subsets of arbitrarily small measure. A countable intersection of such sets can have measure 0.
- 26. Consider the boundary of an open subset U of the real line. Is ∂U always nowhere dense? Is ∂U always of Lebesgue measure 0?

Övningar i FUNKTIONALANALYS

- 27. Prove that the principle of uniform boundedness does not hold in all normed linear spaces.
- 28. Let $\mathbb{Q} = (q_j)_1^{\infty}$ be an enumeration of the rational numbers, and let $\epsilon_{n,j}$, n, j = 1, 2, ... be arbitrary positive numbers. Then the set

$$\bigcap_{n=1}^{\infty} \bigcup_{j=1}^{\infty} (q_j - \epsilon_{n,j}, q_j + \epsilon_{n,j})$$

obviously contains \mathbb{Q} . Prove that this inclusion is always strict.

- 29. Show that a linear isometry T from a Hilbert space into another preserves the inner product, in the sense that $\langle Tx, Ty \rangle = \langle x, y \rangle$.
- 30. Consider the function sequence $(e^{inx})_n$ in $L^p(-\pi,\pi)$. For which $p, 1 \le p \le \infty$, is it weakly or weakly* convergent?
- 31. Let (e_n) denote the "standard basis" in ℓ^p . For which p with $1 \leq p \leq \infty$ does e_n converge weakly or weakly* as $n \to \infty$, and what is the limit?
- 32. Assume that $f_n \to f$ weakly in a normed space, or weakly^{*} in its dual. Prove that

$$||f|| \le \underline{\lim} ||f_n||.$$

Also give examples where this inequality is strict.

- 33. In L^{∞} translation is weakly^{*} continuous: With the notation from problem 18, show that $f_t \to f_{t'}$ weakly^{*} in $L^{\infty} = (L^1)^*$, as $t \to t'$.
- 34. We know that $\ell^1 = c_0^*$ and $(\ell^1)^* = \ell^\infty$. Give an example of a sequence of vectors in ℓ^1 that converges weakly* but not weakly, which means that $\langle f, x_n \rangle \to \langle f, x \rangle$ for all $f \in c_0$ but not for all $f \in \ell^\infty$.

Övningar i FUNKTIONALANALYS

- 35. Let μ be a Radon measure in a locally compact Hausdorff space X. (This means $\mu \geq 0$.) Take $1 \leq p < \infty$. Prove that the space of simple functions is dense in $L^p(\mu)$. By a simple function we mean a finite linear combination of characteristic functions of Borel sets with finite measure. Also prove that $C_c(X)$ is dense in $L^p(\mu)$.
- 36. Let X be a locally compact Hausdorff space. Assume that the signed Radon measures μ_n in X converge vaguely, i.e., weakly^{*} in $M(X) = C_0^*$, to μ . If in addition it is assumed that X is compact and that the μ_n are positive, prove that $\|\mu_n\| \to \|\mu\|$. Also prove that this need not hold if either of the two additional assumptions is suppressed.
- 37. In the locally compact Hausdorff space X, assume that the (positive) finite Radon measures $\mu_n \in M(X) = C_0^*$ converge vaguely to μ . Give an example to show that $\mu_n(A)$ need not tend to $\mu(A)$ for a Borel set $A \subset X$. Prove that, however, $\mu(U) \leq \underline{\lim} \mu_n(U)$ for each open set U.
- 38. In the unit disc, prove that the positive harmonic functions are precisely the Poisson integrals of the (positive) Borel measures on the unit circle.
- 39. Consider the space weak L^p for some measure and some p > 0. Show that the quantity $[f]_p$ has all the properties of a norm, except that the triangle inequality is violated. Also prove that instead of the triangle inequality one has $[f+g]_p \leq C([f]_p+[g]_p)$ for some constant C; one speaks of a quasinorm. Cf. here Folland's exercise 6.4.35 p 199.

40. With $1 \le p, r, s \le \infty$, we want to see that the equation 1/s = 1/p + 1/r - 1 is necessary for Young's inequality. Consider the line with Lebesgue measure, and assume that the equation does not hold.

(a) Show that there is no norm inequality

$$||f * g||_s \le C ||f||_p ||g||_r$$

for any C.

(b) Find a counterexample to the inclusion $L^p * L^r \subset L^s$.