A Matrix inequality

This little calculation is only supposed to compensate for a rather unclear explanation in class ...
Let $u=\left(u_{1}, \ldots, u_{n}\right)^{T}$ and $w=\left(w_{1}, \ldots, w_{N}\right)^{T}$ be vectors in \mathbb{R}^{n}, and let $A=\left(a_{i j}\right)$ be an $n \times n$ matrix. Morover, let the $|u|$ denote the usual Euclidian norm

$$
|u|=\sqrt{\sum_{k=1}^{n} u_{k}^{2}}
$$

Recall the triangle inequality:

$$
|u+w| \leq|u|+|w|
$$

and that there is equality in this expression only if u and w are parallel.
The inequality that I wanted to prove was the following:

$$
\begin{equation*}
|A w| \leq n \max _{i, j}\left|a_{i, j}\right||w| \tag{1}
\end{equation*}
$$

(in fact, in the lecture, the matrix coefficients $a_{i j}$ were allowed to depend on x, and in that case the maximum value must be taken also over all x in the appropriate interval).
Written in full detail, equation (1) becomes

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{n}
\end{array}\right]=\left[\begin{array}{c}
a_{11} w_{1}+a_{12} w_{2}+\cdots a_{1 n} w_{n} \\
a_{21} w_{1}+a_{22} w_{2}+\cdots a_{2 n} w_{n} \\
\vdots \\
a_{n 1} w_{1}+a_{n 2} w_{2}+\cdots a_{n n} w_{n}
\end{array}\right]
$$

Now note that the right hand side can be written

$$
\left[\begin{array}{c}
a_{11} w_{1} \tag{2}\\
a_{22} w_{2} \\
a_{33} w_{3} \\
\vdots \\
a_{n n} w_{n}
\end{array}\right]+\left[\begin{array}{c}
a_{12} w_{2} \\
a_{23} w_{3} \\
a_{34} w_{4} \\
\vdots \\
a_{n 1} w_{1}
\end{array}\right]+\cdots+\left[\begin{array}{c}
a_{1 n} w_{n} \\
a_{21} w_{1} \\
a_{32} w_{2} \\
\vdots \\
a_{n(n-1)} w_{n-1}
\end{array}\right]
$$

(you should verify that all terms appear exactly once). Now,

$$
\left|\left[\begin{array}{c}
a_{12} w_{2} \\
a_{23} w_{3} \\
a_{34} w_{4} \\
\vdots \\
a_{n 1} w_{1}
\end{array}\right]\right| \leq \max _{i, j}\left|a_{i j}\right|\left|\left[\begin{array}{c}
w_{2} \\
w_{3} \\
w_{4} \\
\vdots \\
w_{1}
\end{array}\right]\right|
$$

and that if the the norm of a vector does not change if one permutes the vector components:

$$
\left|\left[\begin{array}{c}
w_{2} \\
w_{3} \\
w_{4} \\
\vdots \\
w_{1}
\end{array}\right]\right|=\left|\left[\begin{array}{c}
w_{1} \\
w_{2} \\
w_{3} \\
\vdots \\
w_{n}
\end{array}\right]\right|
$$

The same reasoning applies to all terms in (2), and hence that all n terms can be estimated by the same expression,

$$
\max _{i, j}\left|a_{i j}\right||w|
$$

and this is enough to prove that the inequaltiy (1) holds.

