
A Matrix inequality

This little calculation is only supposed to compensate for a rather unclear explanation in class ...

Let u = (u1, ..., un)T and w = (w1, ..., wN )T be vectors in Rn, and let A = (aij) be an n × n-
matrix. Morover, let the |u| denote the usual Euclidian norm

|u| =

√√√√ n∑
k=1

u2
k

Recall the triangle inequality:

|u + w| ≤ |u| + |w| ,

and that there is equality in this expression only if u and w are parallel.

The inequality that I wanted to prove was the following:

|Aw| ≤ n max
i,j

|ai,j ||w| . (1)

(in fact, in the lecture, the matrix coefficients aij were allowed to depend on x, and in that case
the maximum value must be taken also over all x in the appropriate interval).

Written in full detail, equation (1) becomes
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Now note that the right hand side can be written
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(you should verify that all terms appear exactly once). Now,∣∣∣∣∣∣∣∣∣∣∣
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and that if the the norm of a vector does not change if one permutes the vector components:∣∣∣∣∣∣∣∣∣∣∣
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The same reasoning applies to all terms in (2), and hence that all n terms can be estimated by
the same expression,

max
i,j

|aij ||w| ,

and this is enough to prove that the inequaltiy (1) holds.


