
Some Linear Algebra for MAN460: The Cayley Hamilton Theorem
and Invariant Subspaces

Most of the material is taken from“Ordinära Differentialekvationer”by Andersson and

Böiers

The Cayley Hamilton Theorem

This theorem says essentially that “A matrix satisfies its own characteristic
equation”. More precisely:

Theorem 1 Let A be a square n by n- matrix, and let pA(λ) be its characteristic
polynomial, i.e. pA(λ) = det(λI −A). Then pA(A) = 0.

Proof: If λ is not an eigenvalue to A, then λI−A is invertible, and (λI−A)(λI−
A)−1 = I. This is well defined except for at the isolated eigenvalues of A, and
so by a continuous extention, it can be considered to hold for all λ.
Now recall Cramer’s rule for computing the inverse of a matrix:

B−1 =
1

detB


b̃11 b̃12 · · · b̃1n

b̃21 b̃22 · · · b̃2n

. . · · · .

. . · · · .

b̃n1 b̃n2 · · · b̃nn

 ,

where the b̃jk are the sub determinants of B.
Using this formula for (λI −A)−1 we find

(λI −A)−1 =
1

pA(λ)


p11(λ) p12(λ) · · · p1n(λ)
p21(λ) p22(λ) · · · p2n(λ)

. . · · · .

. . · · · .
pn1(λ) pn2(λ) · · · pnn(λ)

 ,

where all pjk(λ) are polynomials of degree at most n − 1. This means that we
can write

pA(λ)(λI −A)−1 = λn−1Bn−1 + λn−2Bn−2 + · · ·+ λB1 + B0 ,

where the Bj ’s are constant n by n matrices. Hence

pA(λ)I = (λI −A)
(
λn−1Bn−1 + λn−2Bn−2 + · · ·+ λB1 + B0

)
= λnBn−1 + λn−1Bn−2 + · · ·+ λ2B1 + λB0

−λn−1ABn−1 − λn−2ABn−2 − · · · − λAB1 −AB0 .



This can only be true if the matrices corresponding to each power of λ is an
identity matrix: If pA(λ) = λn + cn−1λ

n−1 + · · ·+ c1λ + c0, then

Bn−1 = I, Bn−2 −ABn−1 = cn−1I . . . B0 −AB1 = c1I, AB0 = c0I .

We can now compute pA(A):

pA(A) = An + cn−1A
n−1 + · · ·+ c1A + c0I

= AnBn−1 + An−1(Bn−2 −ABn−1) + · · ·+ A(B0 −AB1)−AB0

= 0 ,

which follows by combining terms with the same power of A. �

Note that this theorem shows that it is never necessary to compute A to the
power higher than n− 1:

An = −cn−1A
n−1 − cn−2A

n−2 − · · · − c1A− c0I ,

An+1 = −cn−1A
n − cn−2A

n−1 − · · · − c1A
2 − c0A

= (c2
n−1 − cn−2)An−1 + (cn−1cn−2 − cn−3)An−2 + · · ·

+(cn−1c1 − c0)A + cn−1c0I .

This may be very advantageous from a computatinal point of view, because it
is easy to find a recursive formula for the coefficients to A0 . . . An−1, and this is
very much faster than to directly compute high powers of the matrix A.
In fact, there is a general procedure for computing f(A) when f is an entire
function (i.e. analytic in the plane). We begin by a very general result on analytic
functions. A similar result holds for C∞-functions, but then it is much harder
to prove.

Lemma 1 Let f be an anlytic function and p a polynomial of degree (exactly)
n. Then there is an analytic function g and a polynomial of degree at most n−1
so that

f(z) = g(z)p(z) + q(z)

Proof: We prove this by induction of n. Assume than that p(z) = z − c, a first
degree polynomial. If c = 0, then clearly

f(z) =
∞∑

k=0

akzk = z
∞∑

k=1

akzk−1 + a0 ,

and so the lemma holds with q(z) = a0, and g(z) =
∑∞

k=0 ak+1z
k. For a general

c, we set w = z − c, and see that setting F (w) = f(w + c), we can use the
calculation for c = 0 to show that

F (w) = G(w)w + ã0 ,



which then is the same as f(z) = G(z − c)(z − c) + ã0.
Hence the lemma is true for n = 1. Assume now that it is true for n = k− 1 for
some k > 1. Any k-th degree polynomial p(z) can be written

p(z) = p1(z)(z − c) ,

where p1(z) is a polynomial of degree k − 1. By the induction hypothesis

f(z) = g1(z)p1(z) + q1(z) ,

where g1 is an analytic function, and where q1 is a polynomial of degree at most
k− 2. We also know that g1(z) = g(z)(z− c) + q0, for some analytic function g,
and hence

f(z) = (g(z)(z − c) + q0) p1(z) + q1(z)
= g(z) ((z − c)p1(z)) + q0p1(z) + q1(z)
= g(z)p(z) + q(z)

where q(z) = q0p1(z) + q1(z) is a polynomial of degree at most k− 1. Hence the
lemma is also true for n = k, and by the induction principle, for all n ≥ 1. �

The lemma can now be used with the characteristic polynomial of an n × n
matrix: For any analytic function f(z),

f(λ) = g(λ)pA(λ) + q(λ)

where q(λ) is a polynomial of degree at most n − 1. It follows by the Cayley
Hamilton theorem that

f(A) = g(A)pA(A) + q(A) = q(A) ,

and so to compute f(A) it is enough to identify q(λ).

Lemma 2 If the polynomial p(z) in Lemma 1 can be written

p(z) =
m∏

k=1

(z − zk)rk ,

then q(z) is the uniquely determined polynomial which satisfies

djf

dzj
(zk) =

djf

dzj
(zk) , j = 0, ..., (rk − 1)

The proof of this lemma is an exercise.

Invariant subspaces

Let V be an n-dimensional vectorspace and A an operator from V toV. We
recall that if a basis for V is given, then the operator can be represented by an
n× n-matrix.



A linear subspace V1 ⊂ V is said to be invariant under A if for all v ∈ V1, it is
true that Av ∈ V1, i.e., if

AV1 ⊂ V1

For an operator A, we write N (A) = {v ∈ V |Av = 0}, the so-called nullspace
of A. Note that the nullspace is a linear subspace of V.

The Cayley-Hamilton theorem implies that if A : Rn → Rn is an operator
(represented by the matrix A) pA(λ) is its characteristic polynomial, then

N (pA(A)) = Rn

You should verify that the characteristic polyomial does not depend on which
basis (and hence the matrix representation of A) that is chosen, so the statement
above is well defined.

Theorem 2 Assume that pA(λ) = p1(λ)p2(λ), where p1 and p2 are polyno-
mials without common factors (i.e., without common zeros). Then N (p1(A))
and N (p2(A)) are invariant subspaces for A, N (p1(A)) ∩N (p2(A)) = {0}, and
each vector v ∈ Rn can be written in a unique way as v = v1 + v2, where
vi ∈ N (pi(A)), or in other words,

Rn = N (p1(A))⊕N (p2(A))

Proof: First of all, suppose that v ∈ N (pi(A)) i = 1, 2. Then

pi(A)Av = Api(A)v = 0 ,

which proves the invariance of the subspaces N (pi(A)). Next, because p1(λ) and
p2(λ) dont have common factors, the Euclidean algorithm can be used to prove
that there are polynomials q1(z) and q2(z) so that

p1(z)q1(z) + p2(z)q2(z) = 1 .

Therefore

p1(A)q1(A) + p2(A)q2(A) = I ,

and therefore every vector v ∈ Rn can be written v = v1 + v2, where

v1 = p2(A)q2(A)v v2 = p1(A)q1(A)v ,

and it follows that

p1(A)v1 = p1(A)p2(A)q2(A)v = pA(A)q2(A)v = 0



so that v1 ∈ N (p1(A)), and similarly, v2 ∈ N (p2(A)). If v ∈ N (p1(A)) ∩
N (p2(A)), then

v = q1(A)p1(A)v + q2(A)p2(A)v = 0 ,

which proves that N (p1(A)) ∩N (p2(A)) = {0}.

Finally, if there are two such decompositions, v = v1 + v2 = w1 + w2, then

v1 − w1 = v2 − w2

so

vi − wi ∈ N (p1(A)) ∩N (p2(A)) = {0} i = 1, 2 ,

and therefore vi = wi. �

A consequence of this important theorem is that given any matrix A, (or opera-
tor with representation A), there is a natural decomposition of Rn into subspaces
which are invariant with respect to A: if

pA(λ) =
m∏

k=1

(λ− λk)rk ,

where r1 + ... + rm = n, then

Rn = N ((A− λ1)r1)⊕ ...⊕N ((A− λm)rm)


