
MAN460 och TMA013

Examination in “Ordinary differential equa-

tions”

Mathematics, CTH & GU, June 04, 2004, 8.45 – 13.45
Emergency telephone: H̊akan Samuelsson, Tel. 076-2186654
Auxiliary tools: Admitted calculator, admitted mathematical handbook (e.g.Beta)
Responsible teacher: Johannes Brasche

1. Let −∞ < a < b < ∞ and S = {(t, x) : a ≤ t ≤ b, x ∈ R}. Let
f : S −→ R be continuous and suppose that there exists a constant L such
that

|f(t, x)− f(t, z)| ≤ L|x− z|

for all x, z ∈ R, a ≤ t ≤ b and L · (b − a) < 1/2. Let η ∈ R. Show that the
initial value problem

y′(t) = f(t, y(t)),

y(a) = η,

has exactly one solution.

Solution: See the course books.

2. Let φ : [0, a] −→ R be continuous, α ∈ R, β > 0 and

φ(t) ≤ α + β

∫ t

0

φ(s)ds

for all 0 ≤ t ≤ a. Then
φ(t) ≤ αeβt

for all 0 ≤ t ≤ a (Grönvall’s lemma). Prove this lemma.

Solution: See the course books.

3. Solve the following initial value problem:

y′(t) =
e−y2(t)

y(t)(2t + t2)
, y(2+) = 0.
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Solution: ∫
yey2

dy =

∫
1

2t + t2
dt =

1

2
(ln(

t

t + 2
) + c).∫

yey2

dy =
1

2
ey2

.

Thus

y2 = ln(ln(
t

t + 2
) + c),

y(t) =

√
ln(ln(

t

t + 2
) + c).

y(2+) = {ln[ln(
1

2
) + c]}1/2 = 0.

Thus

ln(
1

2
) + c = 1, c = 1− ln(

1

2
) = 1 + ln(2).

4. Is the solution to the initial value problem

y′(t) =
√
|y(t)|, y(0) = 0,

unique? If not, then give two different solutions.

Solution: Obviously y ≡ 0 is a solution. We try to find another solution via
the method of separation of variables.∫

dy√
|y|

=

∫
dt = t + 2c.

For y > 0 we have∫
y−1/2dy = 2y1/2 = t + 2c, y(t) = (t/2 + c)2.

y(0) = 0 yields c = 0.

The function

y(t) =

{
t2/4, t ≥ 0,
0, t < 0

is another solution (note that the derivative of t2/4 at t = 0 equals zero such
that the above function really is differentiable at t = 0).
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5. a) Determine two linearly independent real solutions to

x′1(t) = 3x1(t) + 6x2(t),

x′2(t) = −2x1(t)− 3x2(t).

Solution: a) We determine the eigenvalues of the coefficient matrix A

det(A− λI) = (3− λ)(−3− λ)− 6(−2) = λ2 + 3 = 0 ⇐⇒ λ =
√

3 i.

Thus A has the eigenvalues ±
√

3 i.

b) We compute an eigenvector u corresponding to the eigenvalue
√

3 i

A·
[

x
y

]
=
√

3 i·
[

x
y

]
=⇒ 3x+6y =

√
3 i x =⇒ x =

6√
3 i− 3

y = (−3

2
−
√

3

2
i)y.

Thus

u =

[
−3/2−

√
3 i/2

1

]
is an eigenvector of A corresponding to the eigenvalue

√
3 i.

c) We give a complex solution

u(t) = e
√

3 i t ·
[
−3/2−

√
3 i/2

1

]
= (cos(

√
3t) + i sin(

√
3t)) ·

[
−3/2−

√
3 i/2

1

]
=

[
−3/2 cos(

√
3 t) +

√
3/2 sin(

√
3 t)

cos(
√

3 t)

]
+ i

[
−3/2 sin(

√
3 t)−

√
3/2 cos(

√
3 t)

sin(
√

3 t)

]
is a complex solution. The real part and the imaginary part of u are then
two linearly independent real solutions.

b) Is x(t) ≡ 0 a stable solution of this system of differential equations?

Solution: Yes, it is. Since the coefficient matrix has two linearly independent
eigenvectors and the maximum over the real parts of the eigenvalues is less
than or equal to 0, all solutions are stable.

6. a) Determine all real numbers λn such that

−u′′ = λnu
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has a solution un 6≡ 0 on [0, π] satisfying the Dirichlet boundary conditions
un(0) = 0 = un(π).

Solution: We have seen during the course that the differential operator in
this exercise is symmetric and nonnegative. Thus it has only real eigenvalues,
all eigenvalues are nonnegative and eigenfunctions corresponding to different
eigenvalues are orthogonal.

λ = 0: The general solution to

−u′′ = 0

is
u(x) = c1 + c2 x.

The boundary conditions imply that

0 = u(0) = c1, 0 = u(π) = c2 π.

Thus u ≡ 0 is the only solution to−u′′ = 0 satisfying the boundary conditions
and 0 is not an eigenvalue.

λ > 0. The general solution to

−u′′ = λ u

is
u(x) = c1 cos(

√
λ x) + c2 sin(

√
λ x).

The boundary conditions yield that

0 = u(0) = c1, 0 = u(π) = c2 sin(
√

λ π).

A nontrivial solution exists if and only if sin(
√

λ π) = 0. This is true if and
only if

√
λ = nπ for some n ∈ N.

Thus λn = n2,n = 1, 2, 3, . . . are the eigenvalues of our differential operator
and the preceding considerations show that

un(x) = sin(nx)

is a basis for the eigenspace corresponding to the eigenvalue n2.
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b) Write the function f(x) = x as

f =
∞∑

n=1

cnun,

un as in part a).

Solution:

f =
∞∑

n=1

1

‖ un ‖2
2

〈un, f〉un.

‖ un ‖2
2=

∫ π

0

| sin(nx)|2dx = π/2.

.

〈un, f〉 =

∫ π

0

sin(nx) · xdx = −π

n
(−1)n.

Thus

f =
∞∑

n=1

2

n
(−1)n−1 sin(nx).

.

7. The system

y′1(t) =
1

t
y1(t)− y2(t),

y′2(t) =
1

t2
y1(t) +

2

t
y2(t),

has the solution x1(t) = t2, x2(t) = −t. Determine another, linearly inde-
pendent, solution.

Hint: The ansatz y(t) = φ(t)x(t) + z(t) may be useful.

Solution: See the course book, W.Walter, ch. 15, V Example.

8. Determine the general solution to

y′1(t) = −4y1(t)− 6y2(t) + 3 sin(t)

y′2(t) = y1(t) + y2(t) + 2 sin(t).

Solution: y′ = A · y + b where

A =

(
−4 −6
1 1

)
, b(t) =

(
3 sin t
2 sin t

)
.
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det(A− λI) = det

(
−4− λ −6

1 1− λ

)
= λ2 + 3λ + 2 = 0

if and only if

λ =
−3±

√
9− 4 · 1 · 2
2

= −1 eller − 2.

A ·
(

x
y

)
= −

(
x
y

)
⇒ x + y = −y ⇒ x = −2y and

v1 :=

(
−2

1

)
is an eigenvector to the eigenvalue λ1 := −1.

A ·
(

x
y

)
= −2

(
x
y

)
⇒ x + y = −2y ⇒ x = −3y and

v2 :=

(
−3

1

)
is an eigenvector to the eigenvalue λ2 := −2.

y
1
(t) := eλ1t · v1 = e−t ·

(−2
1

)
and

y
2
(t) := eλ2t · v2 = e−2t ·

(−3
1

)
are solutions to

y = A · y

and

Y (t) :=

(
−2e−t −3e−2t

e−t e−2t

)
a fundamental matrix.

Y (t)−1 =

(
et 3et

−e2t −2e2t

)
,

Y (t)−1b(t) =

(
9et sin t
−7e2t sin t

)
∫

et sin tdt =
(1

2
sin t− 1

2
cos t

)
et∫

e2t sin tdt =
(2

5
sin t− 1

5
cos t

)
e2t

Y (t)

∫
Y (s)−1b(s)ds =

(
−9 sin t + 9 cos t + 42

5
sin t− 21

5
cos t

9
2
sin t− 9

2
cos t− 14

5
sin t + 7

5
cos t

)

=

(
−3

5
sin t + 24

5
cos t

17
10

sin t− 31
10

cos t

)
=: y

p
(t)
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y(t) = y
p
(t) + c1y1

(t) + c2y2
(t)

is the general solution to
y′ = A · y + b;

c1, c2 are arbitrary real numbers.

Good luck! Johannes
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