Recommended exercises for MAN460

(most of these exersices are taken from the book by Walter, some from Andersson, Böiers, and some from other sources)

- 1. Determine all solutions to the following equations, and determine the one passing through the origin
 - (a) $y' = \frac{y+1}{x+2} + \exp(\frac{y+1}{x+2})$ (b) $y' = \frac{x+2y+1}{2x+y+2}$
- 2. Determine all solutions to the following equations, and sketch the solutions. Determine all initial points (x_0, y_0) such that uniqueness does not hold for solutions passing through that point.

(a)

$$y' = 3(\operatorname{sgn}(y))|y|^{2/3}$$

(b)

$$y' = \sqrt{y(1-y)} \qquad \qquad y \le 1$$

3. Use Picard's method for solving the equation

 $x' = 2t(x+1), \qquad x(0) = 0.$

4. Show that the solution x(t) to the initial value problem

$$x' = \sin(t) + \log(1 + x^2), \qquad x(0) = 0$$

is defined on the entire real axis.

5. Show that if F(t) is an invertible matrix, then

$$\frac{d}{dt}F(t)^{-1} = -F(t)^{-1}\frac{dF(t)}{dt}F(t)^{-1}$$

6. (a) Let L(t, D) be a differential operator of second order, and suppose that y_1 and y_2 constitute a basis for the solutions to L(t, D)y = 0. Prove that the fundamental solution is

$$E(t,\tau) = \frac{y_2(t)y_1(\tau) - y_1(t)y_2(\tau)}{W(\tau)}$$

where $W(\tau)$ is the Wronskian $y_1(\tau)y'_2(\tau) - y'_1(\tau)y_2(\tau)$

- (b) Show that if L(t, D)y = y'' + a(t)y, then the Wronskian is constant
- 7. (a) Let L(t, D) be a second order differential operator, and assume that we know a solution \tilde{y} to the equation L(t, D)y = 0. Show that the ansatz $y(t) = \tilde{y}(t)w(t)$ in this equation leads to a differential equation of first order, with w'(t) as unknown.
 - (b) Verify that y(t) = t is a solution to the equation

$$y'' + \frac{1}{t^2}y' - \frac{1}{t^3}y = 0$$

and determine all solutions using the result from (a).

8. Let x(t) be the solution to the initial value problem

$$x' = t^2 + x^2, \qquad x(0) = 1.$$

Show that $x(t) \to \infty$ when $t \to t_1$ for some t_1 with $\pi/4 \le t_1 \le 1$. Hint: prove that

$$\frac{1}{1-t} \le x(t) \le \tan(t + \pi/4)$$

- 9. (a) Use successive approximations to find the general solution to the system x' = Ax, where A is a given $n \times n$ matrix.
 - (b) By the use of Cauchy's polygon method, show that

$$\lim_{n \to \infty} \left(I + \frac{1}{n} A \right)^n = \sum_{k=0}^{\infty} \frac{A^k}{k!}$$

10. Consider the equation

$$x'' + \sin x = 0$$

 $x(0) = 0, \qquad x'(0) = 1.$

Try to estimate the change in x(t) when the initial condition x'(0) = 1 is replaced by $x'(0) = 1 + \delta$.

11. Determine the dimension of the space of solutions to

$$x^{(4)} + x^{'''} + x^{''} + x' = 0,$$

which remain bounded in the limit $t \to \infty$.

12. Compute e^A by summing the power series, when

a)
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$
 b) $A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$
c) $A = \begin{pmatrix} 0 & 1 & -2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ d) $A = \begin{pmatrix} \lambda & \alpha \\ 0 & \lambda \end{pmatrix}$

- 13. Show that $||e^A|| \le e^{||A||}$.
- 14. Show that if $S^* = -S$, then the matrix e^{tS} is orthogonal for all t.
- 15. Assume that \mathbf{v} is an eigen vector with eigenvalue λ to the matrix A. Show that $\mathbf{x}(t) = te^{\lambda t}\mathbf{v}$ is a solution to the system $\mathbf{x}' = A\mathbf{x} + e^{\lambda t}\mathbf{v}$.
- 16. Suppose that the homogeneous system $\mathbf{x}' = A\mathbf{x}$ is asymptotically stable. Show that if $\mathbf{b}(t)$ is bounded for $t \ge t_0$, then every solution to the system $\mathbf{x}' = A\mathbf{x} + \mathbf{b}$ is bounded for $t \ge t_0$.
- 17. Find all equilibrium points to the following systems. Sketch the phase portraits.

(a)
$$x' = y(x^2 + 1),$$
 $y' = 2xy^2$
(b) $x' = y(x^2 + 1),$ $y' = -x(x^2 + 1)$
(c) $x' = e^y,$ $y' = e^y \cos x$
(d) $x' = y(1 + x^2 + y^2),$ $y' = -2x(1 + x^2 + y^2)$

18. Sketch the phase portrait to the system

$$\begin{array}{rcl} x' & = & -y + x \frac{1 - x^2 - y^2}{x^2 + y^2} \\ y' & = & x + y \frac{1 - x^2 - y^2}{x^2 + y^2} \end{array}$$

- (a) Sketch the curves r² = a sin²(2θ), where r, θ are polar coordinates in the xy-plane.
 (b) Give a planar system x' = f(x) with this phase portrait
- 20. Determine a Lyapunov function for the following systems
 - (a) $x' = -2x + xy^3$, $y' = -x^2y^2 y^3$ (b) $x' = -2xy - 2y^2$, $y' = x^2 - y^2 + xy$ (c) $x' = -3x^3 - y$, $y' = x^5 - 2y^3$
- 21. Show that the origin is a stable equilibrium point to the system x' = -2xy, $y' = x^2 y^2$. Is it asymptotically stable?
- 22. Sketch the phase portrait to the equation x'' + 3x' + 2x = 0, and determine a Lyapunov function for the equilibrium point.
- 23. Consider the equation y'' + h(y') + g(y) = 0, where h(0) = g(0) = 0. Assume that sg(s) > 0 when $s \neq 0$ but close to 0, and assume the same to hold for h. Show that

$$E(y, y') = \frac{1}{2}{y'}^2 + \int_0^y g(s) \, ds$$

is a Lyapunov function, and that the origin y = y = 0 is an asymptotically stable equilibrium point.

- 24. Determine the characteristics of the equilibrium point $x(t) \equiv 0$ to the equation $x''' + \sqrt{1 + 2x + 8x'} 1 + \arctan 4x'' = 0$
- 25. The van der Pol equation is $x'' + \mu(x^2 1)x' + x = 0$. How does the stability of the origin depend on the value of μ ?