MATEMATIK

Tentamen 2005-05-28 kl. 08.45-13.45
Solutions and answers to

MAN460/TMA013 Ordinary differential equations

1. Solve the following differential equations:
a) $y^{\prime}=\left(1-y^{2}\right) /\left(1-t^{2}\right)$

Solution: $y(t) \equiv \pm 1$ are two solutions. If $y(t) \neq \pm 1$, we can divide the equation by $1-y^{2}$ to obtain

$$
\frac{y^{\prime}}{1-y^{2}}=\frac{1}{1-t^{2}}
$$

Using $1 /\left(1-t^{2}\right)=\frac{1}{2}\left((1-t)^{-1}+(1+t)^{-1}\right)$, and similarly for y, we find

$$
\left(\frac{1}{1-y(t)}+\frac{1}{1+y(t)}\right) y^{\prime}(t)=\frac{1}{1-t}+\frac{1}{1+t}
$$

which can be integrated to get

$$
\log \left(\frac{1+y(t)}{1-y(t)}\right)=\log \left(\frac{1+y(0)}{1-y(0)}\right)+\log \left(\frac{1+t}{1-t}\right)
$$

that is,

$$
y(t)=\frac{(1+t)\left(1+y_{0}\right)-(1-t)\left(1-y_{0}\right)}{(1+t)\left(1+y_{0}\right)+(1-t)\left(1-y_{0}\right)} .
$$

Note that this formula also includes the cases $y(t) \equiv \pm 1$.
b) $y^{\prime}+y=\cos t$

Solution This is a linear equation, which has the solution

$$
\begin{aligned}
y(t) & =e^{-t} y_{0}+e^{-t} \int_{0}^{t} e^{\tau} \cos \tau d \tau \\
& =e^{-t} y_{0}+\frac{1}{2}\left(\cos t+\sin t-e^{-t}\right) .
\end{aligned}
$$

2. Construct a Lyapunov function for the equation

$$
x^{\prime}=-2 x y-2 y^{2}, \quad y^{\prime}=x^{2}-y^{3}+x y
$$

Solution: Take for example $V(x, y)=x^{2}+2 y^{2}$. Then $V(x, y)$ is positive, and zero only when $x=y=0$, and

$$
\dot{V}(x, y)=2 x\left(-2 x y-2 y^{2}\right)+4 y\left(x^{2}-y^{3}+x y\right)=-4 y^{4} \leq 0
$$

3. Let A and B be two $n \times n$-matrices. In which cases is it true that $e^{A} e^{B}=e^{A+B}$? Give a proof for your answer.

Solution: Theory from the book(s)
4. a) Compute $\exp (A t)$, where $A=\left(\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right)$.

Solution: The characteristic polynomial is $p(\lambda)=(1-\lambda)^{2}-9=(\lambda-4)(\lambda+2)$. Then

$$
e^{\lambda t}=g(\lambda)(\lambda-4)(\lambda+2)+a \lambda+b,
$$

for some analytic function $g(\lambda)$. Setting $\lambda=4$ and $\lambda=-2$ in this equation gives $a=$ $\frac{1}{6}\left(e^{4 t}-e^{-2 t}\right)$ and $b=\frac{1}{3}\left(e^{4 t}+2 e^{-2 t}\right)$, and therefore the Caley-Hamilton theorem

$$
\begin{aligned}
e^{A t} & =\frac{1}{6}\left(e^{4 t}-e^{-2 t}\right) A+\frac{1}{3}\left(e^{4 t}+2 e^{-2 t}\right) I \\
& =\frac{1}{2} e^{4 t}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)+\frac{1}{2} e^{-2 t}\left(\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right) .
\end{aligned}
$$

Remark: This could have been obtained as easily by diagonalization of the matrix A.
b) Compute $\left(1+\frac{1}{n} t A\right)^{n}$, where A is the same matrix as above. Compare the two results.

Solution: As before,

$$
\left(1+\frac{1}{n} t \lambda\right)^{n}=g(\lambda)(\lambda-4)(\lambda+2)+a \lambda+b
$$

for some (other) analytic function g, and new constants a and b. Plugging in $\lambda=4$ and $\lambda=-2$ gives

$$
\begin{aligned}
a & =\frac{1}{6}\left(\left(1+\frac{4 t}{n}\right)^{n}+\left(1-\frac{2 t}{n}\right)^{n}\right) \\
b & =\frac{1}{3}\left(\left(1+\frac{4 t}{n}\right)^{n}-2\left(1-\frac{2 t}{n}\right)^{n}\right)
\end{aligned}
$$

Hence

$$
\left(1+\frac{1}{n} t A\right)^{n}=\frac{1}{2}\left(1+\frac{4 t}{n}\right)^{n}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)+\frac{1}{2}\left(1-\frac{2 t}{n}\right)^{n}\left(\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right)
$$

This gives an approximation to the result in a, because $(1+\alpha / n)^{n} \rightarrow e^{\alpha}$ when $n \rightarrow \infty$.
5. Show that if L is a symmetric differential operator of order n, then n must be an even number.

Solution: Let $L f(t)=a_{n}(t) f^{(n)}(t)+a_{n-1}(t) f^{(n-1)}(t)+\ldots a_{0}(t) f(t)$. Since the inner product is not specified, we choose the most natural one, $(f, g)=\int_{I} f(t) g(t) d t$, where I is some interval. Then for a function g which is zero at the boundaries of I,

$$
(L f, g)=\int_{I} a_{n}(t) f^{(n)}(t) g(t) d t+\quad \text { terms with lower order derivatives. }
$$

By partial integration n times, we get

$$
\begin{aligned}
(L f, g)= & -\int f^{(n-1)}(t) \frac{d}{d t}\left(a_{n}(t) g(t)\right) d t+\text { terms with lower order derivatives } \\
& \cdots \\
= & (-1)^{n} \int f(t) \frac{d^{n}}{d t^{n}}\left(a_{n}(t) g(t)\right) d t+\text { terms with lower order derivatives } \\
= & (-1)^{n} \int f(t) a_{n}(t) g^{(n)}(t) d t+\text { terms with lower order derivatives } \\
= & (-1)^{n} \int f(t) L g(t) d t+\text { terms with lower order derivatives. }
\end{aligned}
$$

Hence, to have $(L f, g)=(f, L g)$, we need that $(-1)^{n}=1$, and that all the terms "with lower order derivatives" vanish.
6. a) Define a Green's function for a boundary value problem of the Sturm-Liouville type. State fundamental properties of this function.

Solution: Theory from the book(s)
b) Construct the Green's function explicitly for the problem

$$
\begin{aligned}
-u^{\prime \prime}(x)+u(x) & =0 \\
u(0) & =0 \\
u^{\prime}(\pi / 2)-u(\pi / 2) & =0
\end{aligned}
$$

Solution: Two independent solutions to $-u^{\prime \prime}(x)+u(x)=0$ can be found as linear combinations of e^{x} and e^{-x}. To find a function that satisfies the boundary condition at $x=0$, take $u_{l}(x)=e^{x}-e^{-x}$, and one that satisfies the boundary condition at $x=\pi / 2$ is $u_{r}(x)=e^{x}$. Referring to the standard notation in the Sturm-liouville theory $p=-1$, and then $c=-\left(u_{l}(x) u_{r}^{\prime}(x)-u_{l}^{\prime}(x) u_{r}(x)\right)=2$, and therefore we find the Green's function as

$$
\Gamma(x, \xi)=\frac{1}{2} \begin{cases}\left(e^{\xi}-e^{-\xi}\right) e^{x} & (\xi \leq x \leq \pi / 2) \\ \left(e^{x}-e^{-x}\right) e^{\xi} & (0 \leq x \leq \xi)\end{cases}
$$

7. State and prove a local existence theorem for systems of first order equations. How can this theorem be used for proving existence and uniqueness to euqations of higher order?

Solution: Theory from the book(s)
8. Consider the equation

$$
\mathbf{y}^{\prime}=A(t) \mathbf{y}
$$

where

$$
A(t)=\left(\begin{array}{ccc}
1 & t & t^{2} \\
t & t^{2} & 2 \\
1 & t^{3} & 1
\end{array}\right)
$$

Prove that the set of solutions to this equation is a three dimensional linear space.

Solution: Theory from the book(s), because it is a linear differential equation.

