MATEMATIK

Tentamen 2005-08-26 kl. 08.30-13.30

MAN460/TMA013 Ordinary differential equations PARTIAL SOLUTIONS

3 Solve the following first order equations:
a) $y^{\prime}+2 x y=e^{-x^{2}}$
b) $y^{\prime}=1+\frac{y}{x}-\left(\frac{y}{x}\right)^{2}$

Solution: a) This is a linear first order differential equation that can be solved with the integrating factor $e^{x^{2}}$:

$$
\frac{d}{d x}\left(y(x) e^{x^{2}}\right)=e^{x^{2}} e^{-x^{2}}=1
$$

and hence

$$
y(x) e^{x^{2}}=x+C \quad \Leftrightarrow \quad y(x)=(x+C) e^{-x^{2}}
$$

Solution: b) Let $u=y / x$. Then $y^{\prime}=u+x u^{\prime}$, and then $u+x u^{\prime}=1+u-u^{2}$, which is separable:

$$
\frac{u^{\prime}}{1-u^{2}}=\frac{1}{x} \quad \Leftrightarrow \quad \frac{u^{\prime}}{2}\left(\frac{1}{1-u}+\frac{1}{1+u}\right)=\frac{1}{x}
$$

which can be integrated to

$$
\log \left|\frac{1+u}{1-u}\right|=2 \log (x)+C \quad \text { or } \quad \frac{1+u}{1-u}=C^{\prime} x^{2}
$$

from which one can solve for $u(x)$, and then go back to y :

$$
y(x)=x \frac{C^{\prime} x^{2}-1}{C^{\prime} x^{2}+1}
$$

5 Let $A=\left(\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right)$. Compute a) $\sin (A) ; \quad$ b) $\exp (A)$.
Solution: One can use the Cayley-Hamilton theorem. The characteristic equation is $(3-\lambda)^{2}-$ $1=0$, i.e. $(\lambda-2)(\lambda-4)=0$. We write

$$
\begin{aligned}
\sin (x) & =p_{1}(x)(x-2)(x-4)+a_{1}+b_{1} x \\
\exp (x) & =p_{2}(x)(x-2)(x-4)+a_{2}+b_{2} x
\end{aligned}
$$

Setting $x=2$ and $x=4$ gives

$$
\begin{aligned}
& a_{1}=2 \sin 2-\sin 4 \quad b_{1}=\frac{1}{2}(\sin 4-\sin 2) \\
& a_{1}=2 \exp 2-\exp 4 \quad b_{1}=\frac{1}{2}(\exp 4-\exp 2)
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \sin A=a_{1}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+b_{1}\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right), \\
& \exp A=a_{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+b_{2}\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right)
\end{aligned}
$$

6 Sketch the phase portrait for the following system:

$$
\left\{\begin{array}{l}
\dot{x}=2 x y+x^{3} \\
\dot{y}=-x^{2}+y^{5}
\end{array}\right.
$$

Solution:(generated with Mathematica ...)

7 Solve the equation $x y^{2} y^{\prime}+y^{3}=x \cos (x)$.
Hint: try a substitution of the form $z=x^{k}$ for a suitably chosen integer k.
Soln: Set $u=y^{3}$, and obtain $u^{\prime}=3 y^{2} y^{\prime}$, which gives

$$
u^{\prime}+\frac{3}{x} u=3 \cos (x),
$$

which can be solved by using the integrating factor x^{3} :

$$
\frac{d}{d x}\left(x^{3} y^{3}\right)=3 x^{2} \cos (x),
$$

which can be integrated to $x^{3} y^{3}=2 x \cos x++\left(x^{2}-2\right) \sin x+C$, from which one easily finds $y(x)$.

8 Show that any equation of the form $P(x) y^{\prime \prime}(x)+Q(x) y^{\prime}(x)+R(x) y(x)=0$ can be made self-adjoint by multiplying with the function $\frac{1}{P} \exp \left(\int(Q / P) d x\right)$.
Soln: This is just a matter of carrying out the differentiation, simplifying, and noticing that the odd-order terms dissapear.

