Tentamensskrivning i **Matematisk logik** (MAN 480) 5p 2002-01-18, kl 8.45-13.45.

Inga hjälpmedel (engelskt-svenskt lexikon får användas). Telefonvakt:

All answers and solutions must be carefully motivated!

- 1. a) Let φ , ψ , and σ be propositional formulas. Show that φ , $\psi \models \sigma$ if and only if $\models (\varphi \land \psi) \to \sigma$. (1.5 p)
 - **b)** Show that $\{p_0, \neg p_1, \dots, p_{2n}, \neg p_{2n+1}, \dots\}$ is consistent. p_0, p_1, \dots are the propositional symbols. (1.5 p)
- 2. Give a derivation in Natural Deduction of

a)
$$\neg \neg p \to p$$
. (1p)

$$\mathbf{b)} \quad (p \lor \bot) \to p \,. \tag{1.5p}$$

- c) $\varphi(a) \to \forall x \varphi(x)$ from the assumption $\forall x (x = a)$, where a is an individual constant. (2p)
- 3. Let Γ be a set of sentences. Show that the following three statements are equivalent
 - (i) Γ is consistent.
 - (ii) For no φ , $\Gamma \vdash \varphi$ and $\Gamma \vdash \neg \varphi$.
 - (iii) There is at least one φ such that $\Gamma \not\vdash \varphi$. (3p)
- 4. Give a Kripke model in which

a)
$$\neg \neg p \to p$$
 is false. (1p)

b)
$$\neg(\neg p \lor \neg q \lor \neg r) \to (p \land q \land r)$$
 is false. (2p)

5. For each of the following sentences, give a structure in which the sentence is false. P, Q and R are predicate symbols.

a)
$$\forall x \exists y P(x, y) \to \exists y \forall x P(x, y)$$
 (1.5p)

b)
$$(\forall x Q(x) \to R) \to \forall x (Q(x) \to R)$$
 (1.5 p)

- 6. a) Let T_1 and T_2 be two theories. Show that, in general, $T_1 \cup T_2$ need not be a theory.

 (1.5 p)
 - b) Show that if Γ has only finite models, then there is an n such that each model has at most n elements. (2p)

Please, turn the page!

1

- 7. Give a prenex form to $(\forall x Q(x) \to \exists x Q(x)) \land P(x, y)$, where P and Q are predicate symbols. (2p)
- 8. Define Gödel's formula U and show that if \mathcal{N} is ω -consistent then neither U nor $\neg U$ can be derived in \mathcal{N} . (\mathcal{N} is Peano's arithmetic.) (3p)

The exam is expected to be corrected within 10 days; when it is corrected I will put a message on the homepage of the course.

Good luck!

Jan