A few facts you need to know to be able to read the extra material on Gödel's incompleteness theorem

Last change: 10 December

- The set of natural numbers is denote by D_N .
- Peano's axiom are denoted by \mathcal{N} and $\vdash_{\mathcal{N}} A$ means that the formula A is derivable from \mathcal{N} .
- The function symbol for the successor function is ', van Dalen uses S.
- A k-place relation R on the natural numbers is representable in \mathcal{N} by the formula $A(x_1, ..., x_k)$ if the following two conditions hold:
 - if $R(n_1, ..., n_k)$ then $\vdash_{\mathcal{N}} A(0^{(n_1)}, ..., 0^{(n_k)}),$ - if $R(n_1, ..., n_k)$ is false then $\vdash_{\mathcal{N}} \neg A(0^{(n_1)}, ..., 0^{(n_k)}).$
- A k-place relation R is decidable if there exists an algorithm $Decide_R$ (i. e. a program in your favourite programming language), such that
 - if $R(n_1,...,n_k)$ then $Decide_R(n_1,...,n_k) = T$, - if $R(n_1,...,n_k)$ is false then $Decide_R(n_1,...,n_k) = F$
- We will use the following fact without proof: If the relation R is decidable, then it is representable in \mathcal{N} .