Kripke Semantics

Jan Smith

January 10, 2002

For constructive logic it is not possible to have a semantics of just two truth values. Instead we will here introduce a semantics which uses partial orders: the nodes of the ordering can be seen as stages of knowledge.

The formal definition is as follows.

A Kripke model consists of a non-empty partial order \leq and a monotone assignment of propositional variables to the nodes of the ordering.

The assignment of a propositional variable p to a node means intuitively that we know at that stage that p holds. That the assignment is monotone means that once we know that a proposition is true, we also know that it is true at later stages. We only require the ordering to be partial since at a given stage there may be different ways to extend the knowledge.

Here is an example:

At the root node, k_0 , no atomic truth is known and there are two ways to proceed: to k_1 where p is known, or to k_2 where q is known. From k_2 there is no possibility to extend our knowledge, but from k_1 we may proceed to k_3 where we get to know r.

We will now define what it means for a propositional formula A to be true at a node k, which we write $k \parallel - A$ and say that k forces A. The definition is by recursion on the construction of the formula A.

- $k \parallel p$ if the propositional variable p is assigned to the node k.
- $k \parallel B \wedge C$ if $k \parallel B$ and $k \parallel C$.
- $k \parallel B \vee C$ if $k \parallel B$ or $k \parallel C$.

- $k \Vdash B \to C$ if for all $l \ge k$, if $l \Vdash B$ then $l \Vdash C$.
- \perp is not forced at any node.

In the example above, neither any disjunction nor any conjunction is forced at k_0 , but $k_0 \parallel r \rightarrow p$.

Since $\neg A$ is defined to be $A \to \bot$, we see that $\neg A$ is forced at a node k if and only if A is not forced at any node greater than or equal to k. So, in the example above, $k_1 \models \neg q$, $k_2 \models \neg p$ and $k_2 \models \neg r$, but none of the negations of p, q and r are forced at k_0 .

The next proposition tells us that if a formula is forced at a node, it is also forced at all greater nodes.

Proposition 1 (Monotonicity) Let k be a node in a Kripke model and A a formula such that $k \models A$. If $l \geq k$, then $l \models A$.

Proof. Induction on the construction of the formula A. Let l be an arbitrary node such that $l \geq k$.

- 1. A is a propositional variable p. By the definition of a Kripke model, the assignment of propositional variables to the nodes must be monotone; hence, $l \models p$.
- 2. A is $B \wedge C$. That $k \parallel B \wedge C$ means that $k \parallel B$ and $k \parallel C$. By induction hypothesis we know that $l \parallel B$ and $l \parallel C$; hence, $l \parallel B \wedge C$.
- 3. A is $B \vee C$. That $k \parallel B \vee C$ means that $k \parallel B$ or $k \parallel C$. If $k \parallel B$, the induction hypothesis gives that $l \parallel B$; hence $l \parallel B \vee C$. The case that $k \parallel C$ is handled in the same way.
- 4. A is $B \to C$. That $k \parallel -B \to C$ means that for all $l' \geq k$, if $l' \parallel -B$ then $l' \parallel -C$. Let $l'' \geq l$. Transitivity of \leq gives $l'' \geq k$; hence, since $k \parallel -B \to C$, if $l'' \parallel -B$ then $l'' \parallel -C$ as desired.

We let \vdash denote derivability in intuitionistic propositional logic, that is, the usual rules except RAA.

Proposition 2 Let $\Gamma \vdash A$. If all formulas in Γ are forced at a node in a Kripke model then also A is forced at that node.

Proof. Let a Kripke model be given. We use induction on the derivation $\Gamma \vdash A$ to show that if all formulas in Γ are forced at a node in the model then also A is forced at that node. We use

 Δ

D

to denote a derivation of the formula D from the set Δ . We will only treat a few of the rules.

- 1. If A is in Γ , the conclusion is trivial.
- 2. A is $B \wedge C$ and is obtained by \wedge -introduction,

$$\frac{\Gamma_1}{B} \quad \frac{\Gamma_2}{C}$$

where $\Gamma_1 \cup \Gamma_2 = \Gamma$. Let k be an arbitrary node of the model and assume that all formulas in Γ are forced at k. Since $\Gamma_1 \subset \Gamma$ and $\Gamma_2 \subset \Gamma$, the induction hypothesis directly gives that both B and C are forced at k; hence, $B \wedge C$ is forced at k.

3. A is $B \to C$ and is obtained by \to -introduction,

$$\frac{\Gamma \cup \{B\}}{C}$$

$$\frac{C}{B \to C}$$

Let k be an arbitrary node at which all formulas of Γ are forced. We must show that for any node $l \geq k$, if $l \parallel -B$ then $l \parallel -C$. By proposition 1, we know that all formulas of Γ are forced at l. The induction hypothesis tells us that C is forced at all nodes which forces all formulas of Γ and B; hence, $B \to C$ is forced at k.

By putting Γ equal to the empty set in proposition 2, we obtain

Corollary 1 (Soundness) If $\vdash A$, then A is forced at all nodes in every Kripke model.

Examples

Soundness makes it possible to use Kripke models to show that certain formulas cannot be proved in intuitionistic propositional logic.

Example 1 In the Kripke model

p is not forced at k_0 , neither is $p \to \bot$ since p is forced at k_1 and $k_0 \le k_1$; so $p \lor \neg p$ is not forced at k_0 . Hence, soundness gives that the law of the excluded middle cannot be proved without reductio ad absurdum.

3

We can also use this model to show that $\neg \neg p \to p$ cannot be derived in intuitionistic logic: we just showed that $\neg p$ is not forced at any node; hence $\neg \neg p$ is forced at k_0 . Since p is not forced at k_0 , $\neg \neg p \to p$ is not forced at k_0 .

Example 2 In the model

neither $p \to q$ nor $q \to p$ is forced at k_0 ; hence $(q \to p) \lor (q \to p)$ is not forced at k_0 .

Example 3

At k_0 , $p \to q$ is forced but not $\neg p \lor q$. So $(p \to q) \to (\neg p \lor q)$ cannot be proved without RAA.

Example 4 $\neg \neg p \rightarrow p$ is forced at the bottom node in

but not $p \vee \neg p$; this shows that $(\neg \neg p \to p) \to (p \vee \neg p)$ does not hold constructively.

Exercises

- 1. Show that $\neg \neg p \to (p \lor \neg p)$ is not forced at the bottom node of the model in Example 1.
- 2. Construct a counter model to
 - (a) $((p \to q) \to p) \to p$ (Peirce's law)
 - (b) $\neg \neg p \lor \neg p$.
 - (c) $(p \to (q \lor r)) \to ((p \to q) \lor (p \to r))$.
 - (d) $\neg (p \land q) \rightarrow \neg p \lor \neg q$.
- 3. Fill in the details for the remaining rules in the proof of proposition 2.