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For constructive logic it is not possible to have a semantics of just two truth
values. Instead we will here introduce a semantics which uses partial orders: the
nodes of the ordering can be seen as stages of knowledge.

The formal definition is as follows.

A Kripke model consists of a non-empty partial order < and a monotone
assignment of propositional variables to the nodes of the ordering.

The assignment of a propositional variable p to a node means intuitively that we
know at that stage that p holds. That the assignment is monotone means that once
we know that a proposition is true, we also know that it is true at later stages. We
only require the ordering to be partial since at a given stage there may be different
ways to extend the knowledge.

Here is an example:

k3 b, r

ki p ks q
ko

At the root node, ky, no atomic truth is known and there are two ways to proceed:
to k1 where p is known, or to ky where ¢ is known. From £k, there is no possibility to
extend our knowledge, but from k; we may proceed to ks where we get to know r.

We will now define what it means for a propositional formula A to be true at
a node k, which we write k£ ||— A and say that k forces A. The definition is by
recursion on the construction of the formula A.

e k| p if the propositional variable p is assigned to the node .
e k| BAC ifk|- Band k|- C.
e k|-BVC ifk|-Borkl|-C.



o k|FB—C ifforalll >k, ifl |- Bthen! |- C.
e | is not forced at any node.

In the example above, neither any disjunction nor any conjunction is forced at kg,
but kg |- r — p.

Since —A is defined to be A — L, we see that —A is forced at a node k if and
only if A is not forced at any node greater than or equal to k. So, in the example
above, k; |- —q, k2 | —p and kg |- —7, but none of the negations of p, ¢ and r are
forced at k.

The next proposition tells us that if a formula is forced at a node, it is also forced
at all greater nodes.

Proposition 1 (Monotonicity) Let k be a node in a Kripke model and A a for-
mula such that k |- A. If 1 > k, then | |- A.

Proof. Induction on the construction of the formula A. Let [ be an arbitrary node
such that [ > k.

1. A is a propositional variable p. By the definition of a Kripke model, the
assignment of propositional variables to the nodes must be monotone; hence,

L p.

2. Ais BAC. That k | B A C means that k | B and k |- C. By induction
hypothesis we know that [ |- B and [ |- C; hence, I |- BAC.

3. Ais BV C. That k |- BV C means that k£ |- Bor k |- C. If k& |- B,
the induction hypothesis gives that [ |- B; hence ! |- BV C. The case that
k | C is handled in the same way.

4. Ais B — C. That k |- B — C means that for all ' > k, if ' |- B then
I" |- C. Let 1" > [. Transitivity of < gives I"” > k; hence, since k |- B — C,
if I" |- B then I" | C as desired.

We let - denote derivability in intuitionistic propositional logic, that is, the usual
rules except RAA.

Proposition 2 Let I' = A. If all formulas in T are forced at a node in a Kripke
model then also A is forced at that node.

Proof. Let a Kripke model be given. We use induction on the derivation I' - A to
show that if all formulas in I" are forced at a node in the model then also A is forced
at that node. We use

A

D

to denote a derivation of the formula D from the set A. We will only treat a few of
the rules.



1. If Aisin I', the conclusion is trivial.

2. Ais B A C and is obtained by A-introduction,

r T,
B C
BAC

where 'y UT', =T'. Let £ be an arbitrary node of the model and assume that
all formulas in T" are forced at k. Since I'1 C T" and I'y C T, the induction
hypothesis directly gives that both B and C are forced at k; hence, B A C' is
forced at k.

3. Ais B — C and is obtained by —-introduction,

ru{B}
C
B—C

Let £ be an arbitrary node at which all formulas of I' are forced. We must
show that for any node | > k, if [ |- B then [ |- C. By proposition 1, we
know that all formulas of I' are forced at [. The induction hypothesis tells
us that C is forced at all nodes which forces all formulas of I' and B; hence,
B — C is forced at k.

By putting I' equal to the empty set in proposition 2, we obtain

Corollary 1 (Soundness) If - A, then A is forced at all nodes in every Kripke
model.

Examples

Soundness makes it possible to use Kripke models to show that certain formulas
cannot be proved in intuitionistic propositional logic.

Example 1  In the Kripke model

ki p

ko

p is not forced at kg, neither is p — L since p is forced at k; and kg < kq1; so pV —p is
not forced at ky. Hence, soundness gives that the law of the excluded middle cannot
be proved without reductio ad absurdum.



We can also use this model to show that =——p — p cannot be derived in intuition-
istic logic: we just showed that —p is not forced at any node; hence ——p is forced
at ky. Since p is not forced at ky, ——p — p is not forced at k.

Example 2 In the model

ki p ks q

N

ko
neither p — ¢ nor ¢ — p is forced at ko; hence (¢ — p) V (¢ — p) is not forced at kq.

Example 3

ki p,q

ko

At ko, p — ¢ is forced but not =pV ¢q. So (p — ¢q) — (—p V q) cannot be proved
without RAA.

Example 4 ——p — p is forced at the bottom node in

ki p ko
ko

but not p V —p; this shows that (——p — p) — (pV —p) does not hold constructively.

Exercises

1. Show that =—p — (p V —p) is not forced at the bottom node of the model in
Example 1.

2. Construct a counter model to
(a) (p—q) —p) —p (Peirce’s law)
(b) ==pV —p.
() p—=(gvr) = ((p—=qVp—r)).
(d) =(pAg) = —pV g

3. Fill in the details for the remaining rules in the proof of proposition 2.



