Suggested solutions
 Mathematical Logic 2002-01-18

Fredrik Engström

1. a) Suppose $\varphi, \psi \vDash \sigma$ then for every model \mathfrak{M}, if $\mathfrak{M} \vDash \varphi$ and $\mathfrak{M} \vDash \psi$ then $\mathfrak{M} \vDash \sigma$. Let \mathfrak{M} be an arbitrary model, if φ and ψ holds in \mathfrak{M} then by the assumption, σ also holds in \mathfrak{M}, so $\mathfrak{M} \vDash(\varphi \wedge \psi) \rightarrow \sigma$, so $\vDash(\varphi \wedge \psi) \rightarrow \sigma$.

On the other hand if $\vDash(\varphi \wedge \psi) \rightarrow \sigma$ then $\mathfrak{M} \vDash(\varphi \wedge \psi) \rightarrow \sigma$ for any model \mathfrak{M}, so if \mathfrak{M} is a model in which φ and ψ is true then also σ is true since $\mathfrak{M} \vDash(\varphi \wedge \psi) \rightarrow \sigma$, so $\varphi, \psi \vDash \sigma$.
b) By Lemma 1.5.4 in van Dalen it is enough to find a valuation v such that $v\left(p_{2 k}\right)=$ $v\left(\neg p_{2 k+1}\right)=1$ for all natural numbers k. This is easy, let $v\left(p_{2 k}\right)=1$ and $v\left(p_{2 k+1}\right)=0$ for every natural number k.
2. a)

$$
\begin{gathered}
\frac{[\neg p]_{2} \quad[\neg \neg p]_{1}}{\frac{1}{p} \mathrm{RAA}_{2}} \rightarrow \mathrm{E} \\
\neg \neg p \rightarrow p
\end{gathered} \mathrm{I}_{1}
$$

b)

$$
\frac{[p \vee \perp]_{1} \quad[p]_{2} \frac{[\perp]_{3}}{p}}{p} \vee \mathrm{E}_{2,3} \mathrm{E}
$$

c)

$$
\begin{gathered}
\frac{[\varphi(a)]_{1} \frac{\forall x(x=a)}{x=a}}{\frac{\varphi(x)}{\forall x \varphi(x)} \forall \mathrm{I}} \forall \mathrm{E} 4 \\
\frac{\varphi(a) \rightarrow \forall x \varphi(x)}{\forall} \rightarrow \mathrm{I}_{1}
\end{gathered}
$$

3. $(i) \Rightarrow$ (ii) Suppose there is a φ such that $\Gamma \vdash \varphi$ and $\Gamma \vdash \neg \varphi$, then by an application of $\rightarrow \mathrm{E}$ we get $\Gamma \vdash \perp$, i.e., Γ is not consistent, contradicting (i).
(ii) \Rightarrow (iii) Since $\Gamma \vdash \psi \rightarrow \psi$, (ii) gives us $\Gamma \nvdash \neg(\psi \rightarrow \psi)$, so there is a formula which can not be proved.
$(i i i) \Rightarrow(i)$ If Γ is not consistent, i.e., $\Gamma \vdash \perp$ then by an application of $\perp \mathrm{E}$ we get $\Gamma \vdash \varphi$ for any formula φ, contradicting (iii).
4. a) Let \mathfrak{K} be the Kripke model

then $k_{1} \Vdash p$ so $k_{0} \nVdash \neg p$ and therefore $k_{0} \Vdash \neg \neg p$ (since also $k_{1} \nVdash \neg p$) and so $k_{0} \nVdash \neg \neg p \rightarrow p$.
b) Let \mathfrak{K} be the Kripke model

then $k_{1} \Vdash p$, so $k_{0} \nVdash \neg p$ and also $k_{0} \nVdash \neg q$ and $k_{0} \nVdash \neg r$. This implies that $k_{0} \nVdash \neg p \vee \neg q \vee \neg r$ and we also have that $k_{1} \nVdash \neg p \vee \neg q \vee \neg r$, so $k_{0} \Vdash \neg(\neg p \vee \neg q \vee \neg r)$. This ends up to that $k_{0} \nVdash \neg(\neg p \vee \neg q \vee \neg r) \rightarrow(p \wedge q \wedge r)$, since $k_{0} \nVdash p \wedge q \wedge r$.
5. a) Let $\mathfrak{M}=\langle\{0,1\},\{\langle 0,0\rangle,\langle 1,1\rangle\}\rangle$, i.e., the interpretation of P is true only for the pairs $\langle 0,0\rangle$ and $\langle 1,1\rangle$. Then it is clear that $\mathfrak{M} \vDash \forall x \exists y P(x, y)$ since we can choose $y=x$, but $\mathfrak{M} \not \vDash \exists y \forall x P(x, y)$ since for every value of y there is a value of $x(x=1-y)$ such that $P(x, y)$ does not hold. This implies that

$$
\mathfrak{M} \not \vDash \forall x \exists y P(x, y) \rightarrow \exists y \forall x P(x, y) .
$$

b) Let $\mathfrak{M}=\langle\{0,1\},\{0\}, F\rangle$, i.e., the interpretation of Q is true only for 0 and the interpretation of R is False. Then $\mathfrak{M} \vDash \forall x Q(x) \rightarrow R$ but $\mathfrak{M} \not \vDash \forall x(Q(x) \rightarrow R)$ since for $x=0$, Q is true and R false. This implies that

$$
\mathfrak{M} \not \vDash(\forall x Q(x) \rightarrow R) \rightarrow \forall x(Q(x) \rightarrow R) .
$$

6. a) Let us work in the language with two 0 -ary predicate symbols P and Q and let

$$
\begin{aligned}
& T_{1}=\{\varphi: P \rightarrow Q \vdash \varphi\} \text { and } \\
& T_{2}=\{\varphi: P \vdash \varphi\} .
\end{aligned}
$$

Both T_{1} and T_{2} are theories (easy to check), I claim that $Q \notin T_{1} \cup T_{2}$ which proves that $T_{1} \cup T_{2}$ is not a theory since $T_{1} \cup T_{2} \vdash Q$ (follows from the fact that $P \rightarrow Q, P \vdash Q$). To see that $Q \notin T_{i}$ for $i=1,2$ we can construct a model of $T_{i} \cup\{\neg Q\}$, which shows that $T_{i} \nvdash Q$. These models are easily constructed (in the first case let P and Q be false and in the second let P be true and Q false).
b) If not, let

$$
\Gamma^{\prime}=\Gamma \cup\left\{\lambda_{k}: k \in \mathbb{N}\right\},
$$

where λ_{k} expresses "there are at least k elements" (see p. 83 in van Dalen). By the compactness theorem Γ^{\prime} is consistent since every finite subset of Γ^{\prime} is contained in one of

$$
\Gamma_{n}=\Gamma \cup\left\{\lambda_{k}: k \leq n\right\},
$$

and Γ has arbitrary large models, so for every n there is a model of Γ_{n}. By the model existence lemma there is a model of Γ^{\prime}, but this model is an infinite model of Γ, a contradiction.
7.

$$
\begin{aligned}
(\forall x Q(x) \rightarrow \exists x Q(x)) & \wedge P(x, y) \\
(\forall z Q(z) \rightarrow \exists w Q(w)) & \wedge P(x, y) \\
\exists z \exists w(Q(z) \rightarrow Q(w)) & \wedge P(x, y) \\
\exists z \exists w((Q(z) \rightarrow Q(w)) & \wedge P(x, y))
\end{aligned}
$$

All the formulas above are equivalent and the last one is in prenex form.
8. See the extra material on Gödel's incompleteness theorem.

