Suggested solutions Mathematical Logic 2002-01-18

Fredrik Engström

1. a) Suppose $\varphi, \psi \models \sigma$ then for every model \mathfrak{M} , if $\mathfrak{M} \models \varphi$ and $\mathfrak{M} \models \psi$ then $\mathfrak{M} \models \sigma$. Let \mathfrak{M} be an arbitrary model, if φ and ψ holds in \mathfrak{M} then by the assumption, σ also holds in \mathfrak{M} , so $\mathfrak{M} \models (\varphi \land \psi) \to \sigma$, so $\models (\varphi \land \psi) \to \sigma$.

On the other hand if $\vDash (\varphi \land \psi) \to \sigma$ then $\mathfrak{M} \vDash (\varphi \land \psi) \to \sigma$ for any model \mathfrak{M} , so if \mathfrak{M} is a model in which φ and ψ is true then also σ is true since $\mathfrak{M} \vDash (\varphi \land \psi) \to \sigma$, so $\varphi, \psi \vDash \sigma$.

b) By Lemma 1.5.4 in van Dalen it is enough to find a valuation v such that $v(p_{2k}) = v(\neg p_{2k+1}) = 1$ for all natural numbers k. This is easy, let $v(p_{2k}) = 1$ and $v(p_{2k+1}) = 0$ for every natural number k.

2. a)

$$\frac{ [\neg p]_2 \quad [\neg \neg p]_1}{\frac{\bot}{p} \operatorname{RAA}_2} {\rightarrow} \mathbf{E} \\ \frac{\neg \neg p \rightarrow p}{\neg \neg p \rightarrow p} \rightarrow \mathbf{I}_1$$

b)

$$\frac{[p \lor \bot]_1 \quad [p]_2 \quad \frac{[\bot]_3}{p} \bot \stackrel{E}{\lor}_{2,3}}{\frac{p}{(p \lor \bot) \to p} \to I_1}$$

c)

$$\frac{[\varphi(a)]_1 \quad \frac{\forall x(x=a)}{x=a} \forall \mathbf{E}}{\frac{\varphi(x)}{\forall x\varphi(x)} \forall \mathbf{I}} \frac{\mathsf{RI4}}{\mathbf{I}}$$

$$\frac{\varphi(x)}{\forall x\varphi(x)} \forall \mathbf{I} \rightarrow \mathbf{I}_1$$

3. $(i) \Rightarrow (ii)$ Suppose there is a φ such that $\Gamma \vdash \varphi$ and $\Gamma \vdash \neg \varphi$, then by an application of $\rightarrow E$ we get $\Gamma \vdash \perp$, i.e., Γ is not consistent, contradicting (i).

 $(ii) \Rightarrow (iii)$ Since $\Gamma \vdash \psi \rightarrow \psi$, (ii) gives us $\Gamma \nvDash \neg(\psi \rightarrow \psi)$, so there is a formula which can not be proved.

 $(iii) \Rightarrow (i)$ If Γ is not consistent, i.e., $\Gamma \vdash \bot$ then by an application of $\bot E$ we get $\Gamma \vdash \varphi$ for any formula φ , contradicting (iii).

4. a) Let \mathfrak{K} be the Kripke model

$$k_1 p$$

then $k_1 \Vdash p$ so $k_0 \nvDash \neg p$ and therefore $k_0 \Vdash \neg \neg p$ (since also $k_1 \nvDash \neg p$) and so $k_0 \nvDash \neg \neg p \rightarrow p$.

b) Let \mathfrak{K} be the Kripke model

then $k_1 \Vdash p$, so $k_0 \nvDash \neg p$ and also $k_0 \nvDash \neg q$ and $k_0 \nvDash \neg r$. This implies that $k_0 \nvDash \neg p \lor \neg q \lor \neg r$ and we also have that $k_1 \nvDash \neg p \lor \neg q \lor \neg r$, so $k_0 \Vdash \neg (\neg p \lor \neg q \lor \neg r)$. This ends up to that $k_0 \nvDash \neg (\neg p \lor \neg q \lor \neg r) \to (p \land q \land r)$, since $k_0 \nvDash p \land q \land r$.

5. a) Let $\mathfrak{M} = \langle \{0,1\}, \{\langle 0,0\rangle, \langle 1,1\rangle \} \rangle$, i.e., the interpretation of P is true only for the pairs $\langle 0,0\rangle$ and $\langle 1,1\rangle$. Then it is clear that $\mathfrak{M} \vDash \forall x \exists y P(x,y)$ since we can choose y = x, but $\mathfrak{M} \nvDash \exists y \forall x P(x,y)$ since for every value of y there is a value of x (x = 1 - y) such that P(x,y) does not hold. This implies that

$$\mathfrak{M} \nvDash \forall x \exists y P(x, y) \to \exists y \forall x P(x, y).$$

b) Let $\mathfrak{M} = \langle \{0,1\}, \{0\}, F \rangle$, i.e., the interpretation of Q is true only for 0 and the interpretation of R is False. Then $\mathfrak{M} \models \forall x Q(x) \to R$ but $\mathfrak{M} \nvDash \forall x (Q(x) \to R)$ since for x = 0, Q is true and R false. This implies that

$$\mathfrak{M} \nvDash (\forall x Q(x) \to R) \to \forall x (Q(x) \to R).$$

6. a) Let us work in the language with two 0-ary predicate symbols P and Q and let

$$T_1 = \{ \varphi : P \to Q \vdash \varphi \} \text{ and}$$
$$T_2 = \{ \varphi : P \vdash \varphi \}.$$

Both T_1 and T_2 are theories (easy to check), I claim that $Q \notin T_1 \cup T_2$ which proves that $T_1 \cup T_2$ is not a theory since $T_1 \cup T_2 \vdash Q$ (follows from the fact that $P \to Q, P \vdash Q$). To see that $Q \notin T_i$ for i = 1, 2 we can construct a model of $T_i \cup \{\neg Q\}$, which shows that $T_i \nvDash Q$. These models are easily constructed (in the first case let P and Q be false and in the second let Pbe true and Q false).

b) If not, let

$$\Gamma' = \Gamma \cup \{\lambda_k : k \in \mathbb{N}\}$$

where λ_k expresses "there are at least k elements" (see p. 83 in van Dalen). By the compactness theorem Γ' is consistent since every finite subset of Γ' is contained in one of

$$\Gamma_n = \Gamma \cup \{\lambda_k : k \le n\},\$$

and Γ has arbitrary large models, so for every *n* there is a model of Γ_n . By the model existence lemma there is a model of Γ' , but this model is an infinite model of Γ , a contradiction.

7.

$$(\forall x Q(x) \to \exists x Q(x)) \land P(x, y) (\forall z Q(z) \to \exists w Q(w)) \land P(x, y) \exists z \exists w (Q(z) \to Q(w)) \land P(x, y) \exists z \exists w ((Q(z) \to Q(w)) \land P(x, y))$$

All the formulas above are equivalent and the last one is in prenex form.

8. See the extra material on Gödel's incompleteness theorem.