Date: 22 October 2005
Material allowed: only the three attached pages with formulas Time: 8.30-13.30

MATHEMATICAL SCIENCES
Chalmers and Göteborg University

Christoffer Cromvik, ph. 0762-721860, will come at about 9.30 and 12.30

Exam in Fourier Analysis

MAN 530, TMA362

1. State and prove the theorem about the best approximation of a function $f \in \mathrm{PC}[a, b]$ by means of the functions of an orthonormal system $\left\{\phi_{1}, \ldots \phi_{N}\right\}$.
2. Deduce by means of the Fourier transform the solution of the heat equation in the half-plane $\{(x, t): t>0\}$, with given initial values $f(x)$ for $t=0$..
3. Find the Fourier series of the function $f(x)=x^{3}$ in the interval $[-\ell, \ell]$, for example in the following way: Choose a constant c in such a way that the Fourier series of $g(x)=f(x)-c x$ kan be differentiated term by term, and determine first the Fourier series of g^{\prime}.
4. Solve the initial value problem

$$
\begin{aligned}
u_{t t}(x, t) & =c^{2} u_{x x}(x, t), \quad 0<x<\pi, \quad t>0 \\
u(0, t) & =0, \quad u(\pi, t)=0 \\
u(x, 0) & =0 \\
u_{t}(x, 0) & =x \sin x .
\end{aligned}
$$

Here $c>0$ is a constant.
5. Solve the following Dirichlet problem in the rectangle $0<x<\ell$, $0<y<L$

$$
\begin{aligned}
\Delta u & =0 \\
u(0, y) & =0, \quad u(\ell, y)=1 \\
u(x, 0) & =1, \quad u(x, L)=1
\end{aligned}
$$

6. How many eigenvalues λ with $\lambda<50$ does the following SturmLiouville problem have?

$$
f^{\prime \prime}+\lambda f=0, \quad f(0)=0, \quad f^{\prime}(1)=-f(1)
$$

The grading will be finished by 8 November. You may then get your exam paper at the reception (mottagningsrummet) weekdays from 12.30 to 13.00 .

Solutions to
exam in Fourier Analysis
MAN 530, TMA362
22 October 2005

3.

The function $g(x)=x^{3}-c x$ is defined and odd in the interval $[-\ell, \ell]$. In order to allow differentiation term by term of its Fourier series, we must choose the value of c so as to make the 2ℓ-periodic extension of g continuous on the line. This will be true if $g(\ell)=0$, which implies $c=\ell^{2}$. With c determined in this way, g will extend to a piecewise smooth and continuous function on the line, and the theorem about differentiation of Fourier series applies. So if the Fourier series of g is

$$
g(x)=\sum_{1}^{\infty} b_{n} \sin \frac{n \pi x}{\ell}
$$

that of g^{\prime} is

$$
g^{\prime}(x)=\sum_{1}^{\infty} \frac{n \pi}{\ell} b_{n} \cos \frac{n \pi x}{\ell} .
$$

But $g^{\prime}(x)=3 x^{2}-\ell^{2}$, and the Fourier series of this even function can be obtained from entry 16 of the Fourier series table, with $\theta=\pi x / \ell$. One finds

$$
3 x^{2}-\ell^{2}=\frac{12 \ell^{2}}{\pi^{2}} \sum_{1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos \frac{n \pi x}{\ell}
$$

Identifying coefficients, we have

$$
b_{n}=\frac{12 \ell^{3}}{\pi^{3}} \frac{(-1)^{n}}{n^{3}}
$$

Thus we have the Fourier series of g, and we need also that of the term $\ell^{2} x$. Entry 1 of the table shows that

$$
\ell^{2} x=\frac{2 \ell^{3}}{\pi} \sum_{1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{n \pi x}{\ell}
$$

Summing up, we get

$$
x^{3}=\ell^{3} \sum_{1}^{\infty}(-1)^{n}\left(\frac{12}{\pi^{3} n^{3}}-\frac{2}{\pi n}\right) \sin \frac{n \pi x}{\ell} .
$$

It is of course also possible to compute the coefficients by straightforward integration.
4.

This is a standard problem for the wave equation, and one knows that the solution is given by an expression of type

$$
u(x, t)=\sum_{1}^{\infty} b_{n} \sin n x \sin n c t .
$$

Notice that there will be no cosine term in $n c t$, since the initial values $u(x, 0)$ are 0 . The initial values of u_{t} lead to

$$
\sum_{1}^{\infty} n c b_{n} \sin n x=x \sin x, \quad 0<x<\pi .
$$

To find the Fourier sine series expansion of $x \sin x$, one can compute the coefficients directly. But we choose another method, and start by expanding x in a cosine series. From entry 2 in the table, we have

$$
x=\frac{\pi}{2}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos (2 n-1) x}{(2 n-1)^{2}}, \quad 0<x<\pi .
$$

Now $\cos (2 n-1) x \sin x=(\sin 2 n x-\sin (2 n-2) x) / 2$, and so

$$
x \sin x=\frac{\pi}{2} \sin x-\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin 2 n x}{(2 n-1)^{2}}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin (2 n-2) x}{(2 n-1)^{2}} .
$$

In the last sum here, we replace n by $n+1$. Since the first term is 0 , the sum equals

$$
\sum_{n=1}^{\infty} \frac{\sin 2 n x}{(2 n+1)^{2}}
$$

Inserting this above, we get

$$
\begin{aligned}
x \sin x & =\frac{\pi}{2} \sin x-\frac{2}{\pi} \sum_{n=1}^{\infty}\left(\frac{1}{(2 n-1)^{2}}-\frac{1}{(2 n+1)^{2}}\right) \sin 2 n x \\
& =\frac{\pi}{2} \sin x-\frac{16}{\pi} \sum_{n=1}^{\infty} \frac{n}{\left(4 n^{2}-1\right)^{2}} \sin 2 n x .
\end{aligned}
$$

We conclude that $b_{1}=\pi / 2 c$, that $b_{n}=0$ for odd $n>1$ and that

$$
b_{2 n}=-\frac{8}{\pi c\left(4 n^{2}-1\right)^{2}}
$$

Finally, we get

$$
u(x, t)=\frac{\pi}{2 c} \sin x \sin c t-\frac{8}{\pi c} \sum_{n=1}^{\infty} \frac{1}{\left(4 n^{2}-1\right)^{2}} \sin 2 n x \sin 2 n c t .
$$

5.

Consider first the problem with the boundary condition $u(\ell, y)=1$ replaced by the homogeneous condition $u(\ell, y)=0$. By separation of variables, one finds that the solution u_{1} of this problem is of the form

$$
u_{1}(x, y)=\sum_{n=1}^{\infty} \sin \frac{n \pi x}{\ell}\left(a_{n} \sinh \frac{n \pi y}{\ell}+b_{n} \sinh \frac{n \pi(L-y)}{\ell}\right) .
$$

The coefficients a_{n} and b_{n} are determined by the boundary conditions for $y=0$ and $y=L$. This leads to

$$
\sum_{n=1}^{\infty} b_{n} \sinh \frac{n \pi L}{\ell} \sin \frac{n \pi x}{\ell}=1
$$

and the same equation for a_{n}. The expansion in a sine series of the constant 1 is (entry 6 in the table)

$$
1=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2 n-1} \sin \frac{(2 n-1) \pi x}{\ell}, \quad 0<x<\ell
$$

Thus

$$
a_{2 n-1}=b_{2 n-1}=\frac{4}{\pi} \frac{1}{(2 n-1) \sinh (2 n-1) \pi L / \ell}, \quad n=1,2, \ldots
$$

and

$$
a_{2 n}=b_{2 n}=0, \quad n=1,2, \ldots,
$$

so that

$$
\begin{array}{r}
u_{1}(x, y)=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n-1) \sinh (2 n-1) \pi L / \ell} . \\
\cdot \sin \frac{(2 n-1) \pi x}{\ell}\left(\sinh \frac{(2 n-1) \pi y}{\ell}+\sinh \frac{(2 n-1) \pi(L-y)}{\ell}\right) .
\end{array}
$$

Next we consider the Dirichlet problem obtained by replacing in the given problem the boundary conditions $u(x, 0)=u(x, L)=1$ by $u(x, 0)=$ $u(x, L)=0$. To find the solution u_{2}, we can apply the preceding method after swapping the variables x and y and also the lengths ℓ and L. Thus we have

$$
u_{2}(x, y)=\sum_{n=1}^{\infty} \sin \frac{n \pi y}{L}\left(a_{n}^{\prime} \sinh \frac{n \pi x}{\ell}+b_{n}^{\prime} \sinh \frac{n \pi(\ell-x)}{L}\right) .
$$

Because of the conditions for $x=0$ and $x=\ell$, we get expressions for a_{n}^{\prime} analogous to those of a_{n} above, whereas all $b_{n}^{\prime}=0$. This means that

$$
u_{2}(x, y)=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n-1) \sinh (2 n-1) \pi \ell / L} \sin \frac{(2 n-1) \pi y}{L} \sinh \frac{(2 n-1) \pi x}{L} .
$$

Since the solution u of the given problem is $u=u_{1}+u_{2}$, we finally find

$$
\begin{array}{r}
u(x, y)=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n-1) \sinh (2 n-1) \pi L / \ell} \sin \frac{(2 n-1) \pi x}{\ell} . \\
\cdot\left(\sinh \frac{(2 n-1) \pi y}{\ell}+\sinh \frac{(2 n-1) \pi(L-y)}{\ell}\right) \\
+\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n-1) \sinh (2 n-1) \pi \ell / L} \sin \frac{(2 n-1) \pi y}{L} \sinh \frac{(2 n-1) \pi x}{L} .
\end{array}
$$

We remark that a somewhat simpler method is to observe that the boundary values 1 on all four sides of the rectangle would trivially give a solution which is identically 1 in the rectangle. Thus $1-u$ solves a Dirchlet problem with value 1 on one rectangle side and 0 on the other three sides. In this way, one can write expressions for $1-u$ and u of the above type but shorter.
6.

In the case $\lambda<0$ we let $\lambda=-\mu^{2}$ with $\mu>0$. Then the general solution of the differential equation is $f(x)=a \cosh \mu x+b \sinh \mu x$. The first boundary condition implies $a=0$, and the second leads to $b \mu \cosh \mu=-b \sinh \mu$. We get $\tanh \mu=-\mu$, an equation which has no solution $\mu>0$. Thus there are no negative eigenvalues.

For $\lambda=0$ we get solutions $f(x)=a x+b$, and the boundary conditions imply $b=0$ and $a=-a$, so that $a=b=0$. This means that 0 is not an eigenvalue.

For $0<\lambda<50$ we let $\lambda=\nu^{2}$ with $0<\nu<\sqrt{50}$. The solutions of the differential equation are $f(x)=a \cos \nu x+b \sin \nu x$, and the boundary
conditions imply $a=0$ and $b \nu \cos \nu=-\sin \nu$, so that $\tan \nu=-\nu$. We must thus determine the number of solution of the equation $\tan \nu=-\nu$ with $0<\nu<\sqrt{50}$. In the ν, y plane, this means the number of intersections between the line $y=-\nu$ and the curve $y=\tan \nu$, with ν in the indicated interval. It is immediately seen that the line has precisely one intersection with each branch of the tan curve, and in particular one intersection in each interval $(n-1 / 2) \pi<\nu<n \pi, \quad n=1,2, \ldots$. We must thus determine how many of these intersections that fall in $0<\nu<\sqrt{50}$. But $\sqrt{50}>2 \pi$, since (equivalently) $\pi^{2}<12.5$. And $\sqrt{50}<2.5 \pi$, since $\pi^{2}>8$. This means that we get the first two intersections, and the final answer is two.

