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Material allowed: only the three
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Christo�er Cromvik,
ph. 0762-721860, will come
at about 9.30 and 12.30

Exam in Fourier Analysis

MAN 530, TMA362

1. State and prove the theorem about the best approximation of a func-
tion f ∈ PC[a, b] by means of the functions of an orthonormal system
{φ1, ...φN}.

2. Deduce by means of the Fourier transform the solution of the heat
equation in the half-plane {(x, t) : t > 0}, with given initial values f(x)
for t = 0..

3. Find the Fourier series of the function f(x) = x3 in the interval [−`, `],
for example in the following way: Choose a constant c in such a way
that the Fourier series of g(x) = f(x) − cx kan be di�erentiated term
by term, and determine �rst the Fourier series of g′.

4. Solve the initial value problem

utt(x, t) = c2uxx(x, t), 0 < x < π, t > 0

u(0, t) = 0, u(π, t) = 0

u(x, 0) = 0

ut(x, 0) = x sin x.

Here c > 0 is a constant.

5. Solve the following Dirichlet problem in the rectangle 0 < x < `,
0 < y < L

∆u = 0

u(0, y) = 0, u(`, y) = 1

u(x, 0) = 1, u(x, L) = 1.

6. How many eigenvalues λ with λ < 50 does the following Sturm-
Liouville problem have?

f ′′ + λf = 0, f(0) = 0, f ′(1) = −f(1)

The grading will be �nished by 8 November. You may then get your exam
paper at the reception (mottagningsrummet) weekdays from 12.30 to 13.00.



Solutions to

exam in Fourier Analysis

MAN 530, TMA362
22 October 2005

3.

The function g(x) = x3 − cx is de�ned and odd in the interval [−`, `].
In order to allow di�erentiation term by term of its Fourier series, we must
choose the value of c so as to make the 2`-periodic extension of g continuous
on the line. This will be true if g(`) = 0, which implies c = `2. With c
determined in this way, g will extend to a piecewise smooth and continuous
function on the line, and the theorem about di�erentiation of Fourier series
applies. So if the Fourier series of g is

g(x) =
∞∑
1

bn sin
nπx

`
,

that of g′ is

g′(x) =
∞∑
1

nπ

`
bn cos

nπx

`
.

But g′(x) = 3x2 − `2, and the Fourier series of this even function can be
obtained from entry 16 of the Fourier series table, with θ = πx/`. One �nds

3x2 − `2 =
12`2

π2

∞∑
1

(−1)n

n2
cos

nπx

`
.

Identifying coe�cients, we have

bn =
12`3

π3

(−1)n

n3
.

Thus we have the Fourier series of g, and we need also that of the term `2x.
Entry 1 of the table shows that

`2x =
2`3

π

∞∑
1

(−1)n+1

n
sin

nπx

`
.

Summing up, we get

x3 = `3

∞∑
1

(−1)n

(
12

π3n3
− 2

πn

)
sin

nπx

`
.
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It is of course also possible to compute the coe�cients by straightforward
integration.

4.

This is a standard problem for the wave equation, and one knows that
the solution is given by an expression of type

u(x, t) =
∞∑
1

bn sin nx sin nct.

Notice that there will be no cosine term in nct, since the initial values u(x, 0)
are 0. The initial values of ut lead to

∞∑
1

ncbn sin nx = x sin x, 0 < x < π.

To �nd the Fourier sine series expansion of x sin x, one can compute the
coe�cients directly. But we choose another method, and start by expanding
x in a cosine series. From entry 2 in the table, we have

x =
π

2
− 4

π

∞∑
n=1

cos(2n− 1)x

(2n− 1)2
, 0 < x < π.

Now cos(2n− 1)x sin x = (sin 2nx− sin(2n− 2)x)/2, and so

x sin x =
π

2
sin x− 2

π

∞∑
n=1

sin 2nx

(2n− 1)2
+

2

π

∞∑
n=1

sin(2n− 2)x

(2n− 1)2
.

In the last sum here, we replace n by n+1. Since the �rst term is 0, the sum
equals

∞∑
n=1

sin 2nx

(2n + 1)2
.

Inserting this above, we get

x sin x =
π

2
sin x− 2

π

∞∑
n=1

(
1

(2n− 1)2
− 1

(2n + 1)2

)
sin 2nx

=
π

2
sin x− 16

π

∞∑
n=1

n

(4n2 − 1)2
sin 2nx.
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We conclude that b1 = π/2c, that bn = 0 for odd n > 1 and that

b2n = − 8

πc(4n2 − 1)2
.

Finally, we get

u(x, t) =
π

2c
sin x sin ct− 8

πc

∞∑
n=1

1

(4n2 − 1)2
sin 2nx sin 2nct.

5.

Consider �rst the problem with the boundary condition u(`, y) = 1 re-
placed by the homogeneous condition u(`, y) = 0. By separation of variables,
one �nds that the solution u1 of this problem is of the form

u1(x, y) =
∞∑

n=1

sin
nπx

`

(
an sinh

nπy

`
+ bn sinh

nπ(L− y)

`

)
.

The coe�cients an and bn are determined by the boundary conditions for
y = 0 and y = L. This leads to

∞∑
n=1

bn sinh
nπL

`
sin

nπx

`
= 1

and the same equation for an. The expansion in a sine series of the constant
1 is (entry 6 in the table)

1 =
4

π

∞∑
n=1

1

2n− 1
sin

(2n− 1)πx

`
, 0 < x < `.

Thus

a2n−1 = b2n−1 =
4

π

1

(2n− 1) sinh (2n− 1)πL/`
, n = 1, 2, ...

and
a2n = b2n = 0, n = 1, 2, ... ,

so that

u1(x, y) =
4

π

∞∑
n=1

1

(2n− 1) sinh (2n− 1)πL/`
·

· sin (2n− 1)πx

`

(
sinh

(2n− 1)πy

`
+ sinh

(2n− 1)π(L− y)

`

)
.
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Next we consider the Dirichlet problem obtained by replacing in the gi-
ven problem the boundary conditions u(x, 0) = u(x, L) = 1 by u(x, 0) =
u(x, L) = 0. To �nd the solution u2, we can apply the preceding method
after swapping the variables x and y and also the lengths ` and L. Thus we
have

u2(x, y) =
∞∑

n=1

sin
nπy

L

(
a′n sinh

nπx

`
+ b′n sinh

nπ(`− x)

L

)
.

Because of the conditions for x = 0 and x = `, we get expressions for a′n
analogous to those of an above, whereas all b′n = 0. This means that

u2(x, y) =
4

π

∞∑
n=1

1

(2n− 1) sinh (2n− 1)π`/L
sin

(2n− 1)πy

L
sinh

(2n− 1)πx

L
.

Since the solution u of the given problem is u = u1 + u2, we �nally �nd

u(x, y) =
4

π

∞∑
n=1

1

(2n− 1) sinh (2n− 1)πL/`
sin

(2n− 1)πx

`
·

·
(

sinh
(2n− 1)πy

`
+ sinh

(2n− 1)π(L− y)

`

)
+

4

π

∞∑
n=1

1

(2n− 1) sinh (2n− 1)π`/L
sin

(2n− 1)πy

L
sinh

(2n− 1)πx

L
.

We remark that a somewhat simpler method is to observe that the bounda-
ry values 1 on all four sides of the rectangle would trivially give a solution
which is identically 1 in the rectangle. Thus 1− u solves a Dirchlet problem
with value 1 on one rectangle side and 0 on the other three sides. In this way,
one can write expressions for 1− u and u of the above type but shorter.

6.

In the case λ < 0 we let λ = −µ2 with µ > 0. Then the general solution of
the di�erential equation is f(x) = a cosh µx + b sinh µx. The �rst boundary
condition implies a = 0, and the second leads to bµ cosh µ = −b sinh µ. We
get tanh µ = −µ, an equation which has no solution µ > 0. Thus there are
no negative eigenvalues.

For λ = 0 we get solutions f(x) = ax + b, and the boundary conditions
imply b = 0 and a = −a, so that a = b = 0. This means that 0 is not an
eigenvalue.

For 0 < λ < 50 we let λ = ν2 with 0 < ν <
√

50. The solutions of
the di�erential equation are f(x) = a cos νx + b sin νx, and the boundary
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conditions imply a = 0 and bν cos ν = − sin ν, so that tan ν = −ν. We
must thus determine the number of solution of the equation tan ν = −ν
with 0 < ν <

√
50. In the ν, y plane, this means the number of intersections

between the line y = −ν and the curve y = tan ν, with ν in the indicated
interval. It is immediately seen that the line has precisely one intersection
with each branch of the tan curve, and in particular one intersection in each
interval (n − 1/2)π < ν < nπ, n = 1, 2, .... We must thus determine how
many of these intersections that fall in 0 < ν <

√
50. But

√
50 > 2π, since

(equivalently) π2 < 12.5. And
√

50 < 2.5π, since π2 > 8. This means that we
get the �rst two intersections, and the �nal answer is two.
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