MATHEMATICAL SCIENCES Chalmers and Göteborg University Date: 22 October 2005 Material allowed: only the three attached pages with formulas Time: 8.30 - 13.30 Christoffer Cromvik, ph. 0762-721860, will come at about 9.30 and 12.30

Exam in Fourier Analysis MAN 530, TMA362

- 1. State and prove the theorem about the best approximation of a function $f \in PC[a, b]$ by means of the functions of an orthonormal system $\{\phi_1, ..., \phi_N\}$.
- 2. Deduce by means of the Fourier transform the solution of the heat equation in the half-plane $\{(x,t): t > 0\}$, with given initial values f(x) for t = 0.
- 3. Find the Fourier series of the function $f(x) = x^3$ in the interval $[-\ell, \ell]$, for example in the following way: Choose a constant c in such a way that the Fourier series of g(x) = f(x) cx kan be differentiated term by term, and determine first the Fourier series of g'.
- 4. Solve the initial value problem

$$u_{tt}(x,t) = c^2 u_{xx}(x,t), \qquad 0 < x < \pi, \quad t > 0$$

$$u(0,t) = 0, \quad u(\pi,t) = 0$$

$$u(x,0) = 0$$

$$u_t(x,0) = x \sin x.$$

Here c > 0 is a constant.

5. Solve the following Dirichlet problem in the rectangle $0 < x < \ell$, 0 < y < L

$$\begin{array}{rcl} \Delta u &=& 0 \\ u(0,y) &=& 0, & u(\ell,y) = 1 \\ u(x,0) &=& 1, & u(x,L) = 1. \end{array}$$

6. How many eigenvalues λ with $\lambda < 50$ does the following Sturm-Liouville problem have?

$$f'' + \lambda f = 0,$$
 $f(0) = 0,$ $f'(1) = -f(1)$

The grading will be finished by 8 November. You may then get your exam paper at the reception (mottagningsrummet) weekdays from 12.30 to 13.00.

Solutions to exam in Fourier Analysis MAN 530, TMA362 22 October 2005

3.

The function $g(x) = x^3 - cx$ is defined and odd in the interval $[-\ell, \ell]$. In order to allow differentiation term by term of its Fourier series, we must choose the value of c so as to make the 2ℓ -periodic extension of g continuous on the line. This will be true if $g(\ell) = 0$, which implies $c = \ell^2$. With cdetermined in this way, g will extend to a piecewise smooth and continuous function on the line, and the theorem about differentiation of Fourier series applies. So if the Fourier series of g is

$$g(x) = \sum_{1}^{\infty} b_n \sin \frac{n\pi x}{\ell},$$

that of g' is

$$g'(x) = \sum_{1}^{\infty} \frac{n\pi}{\ell} b_n \cos \frac{n\pi x}{\ell}.$$

But $g'(x) = 3x^2 - \ell^2$, and the Fourier series of this even function can be obtained from entry 16 of the Fourier series table, with $\theta = \pi x/\ell$. One finds

$$3x^2 - \ell^2 = \frac{12\ell^2}{\pi^2} \sum_{1}^{\infty} \frac{(-1)^n}{n^2} \cos\frac{n\pi x}{\ell}.$$

Identifying coefficients, we have

$$b_n = \frac{12\ell^3}{\pi^3} \frac{(-1)^n}{n^3}.$$

Thus we have the Fourier series of g, and we need also that of the term $\ell^2 x$. Entry 1 of the table shows that

$$\ell^2 x = \frac{2\ell^3}{\pi} \sum_{1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{n\pi x}{\ell}.$$

Summing up, we get

$$x^{3} = \ell^{3} \sum_{1}^{\infty} (-1)^{n} \left(\frac{12}{\pi^{3} n^{3}} - \frac{2}{\pi n}\right) \sin \frac{n\pi x}{\ell}.$$

It is of course also possible to compute the coefficients by straightforward integration.

4.

This is a standard problem for the wave equation, and one knows that the solution is given by an expression of type

$$u(x,t) = \sum_{1}^{\infty} b_n \sin nx \, \sin nct.$$

Notice that there will be no cosine term in nct, since the initial values u(x, 0) are 0. The initial values of u_t lead to

$$\sum_{1}^{\infty} ncb_n \sin nx = x \sin x, \quad 0 < x < \pi.$$

To find the Fourier sine series expansion of $x \sin x$, one can compute the coefficients directly. But we choose another method, and start by expanding x in a cosine series. From entry 2 in the table, we have

$$x = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos(2n-1)x}{(2n-1)^2}, \qquad 0 < x < \pi.$$

Now $\cos(2n-1)x \sin x = (\sin 2nx - \sin(2n-2)x)/2$, and so

$$x\sin x = \frac{\pi}{2}\sin x - \frac{2}{\pi}\sum_{n=1}^{\infty}\frac{\sin 2nx}{(2n-1)^2} + \frac{2}{\pi}\sum_{n=1}^{\infty}\frac{\sin(2n-2)x}{(2n-1)^2}.$$

In the last sum here, we replace n by n+1. Since the first term is 0, the sum equals

$$\sum_{n=1}^{\infty} \frac{\sin 2nx}{(2n+1)^2}.$$

Inserting this above, we get

$$x\sin x = \frac{\pi}{2}\sin x - \frac{2}{\pi}\sum_{n=1}^{\infty} \left(\frac{1}{(2n-1)^2} - \frac{1}{(2n+1)^2}\right)\sin 2nx$$
$$= \frac{\pi}{2}\sin x - \frac{16}{\pi}\sum_{n=1}^{\infty}\frac{n}{(4n^2-1)^2}\sin 2nx.$$

We conclude that $b_1 = \pi/2c$, that $b_n = 0$ for odd n > 1 and that

$$b_{2n} = -\frac{8}{\pi c (4n^2 - 1)^2}.$$

Finally, we get

$$u(x,t) = \frac{\pi}{2c} \sin x \sin ct - \frac{8}{\pi c} \sum_{n=1}^{\infty} \frac{1}{(4n^2 - 1)^2} \sin 2nx \sin 2nct.$$

5.

Consider first the problem with the boundary condition $u(\ell, y) = 1$ replaced by the homogeneous condition $u(\ell, y) = 0$. By separation of variables, one finds that the solution u_1 of this problem is of the form

$$u_1(x,y) = \sum_{n=1}^{\infty} \sin \frac{n\pi x}{\ell} \left(a_n \sinh \frac{n\pi y}{\ell} + b_n \sinh \frac{n\pi (L-y)}{\ell} \right).$$

The coefficients a_n and b_n are determined by the boundary conditions for y = 0 and y = L. This leads to

$$\sum_{n=1}^{\infty} b_n \sinh \frac{n\pi L}{\ell} \sin \frac{n\pi x}{\ell} = 1$$

and the same equation for a_n . The expansion in a sine series of the constant 1 is (entry 6 in the table)

$$1 = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin \frac{(2n-1)\pi x}{\ell}, \qquad 0 < x < \ell.$$

Thus

$$a_{2n-1} = b_{2n-1} = \frac{4}{\pi} \frac{1}{(2n-1)\sinh((2n-1)\pi L/\ell)}, \qquad n = 1, 2, \dots$$

and

$$a_{2n} = b_{2n} = 0, \qquad n = 1, 2, \dots,$$

so that

$$u_1(x,y) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2n-1)\sinh((2n-1)\pi L/\ell)} \cdot \sin\frac{(2n-1)\pi x}{\ell} \left(\sinh\frac{(2n-1)\pi y}{\ell} + \sinh\frac{(2n-1)\pi (L-y)}{\ell}\right).$$

Next we consider the Dirichlet problem obtained by replacing in the given problem the boundary conditions u(x,0) = u(x,L) = 1 by u(x,0) = u(x,L) = 0. To find the solution u_2 , we can apply the preceding method after swapping the variables x and y and also the lengths ℓ and L. Thus we have

$$u_2(x,y) = \sum_{n=1}^{\infty} \sin \frac{n\pi y}{L} \left(a'_n \sinh \frac{n\pi x}{\ell} + b'_n \sinh \frac{n\pi(\ell-x)}{L} \right).$$

Because of the conditions for x = 0 and $x = \ell$, we get expressions for a'_n analogous to those of a_n above, whereas all $b'_n = 0$. This means that

$$u_2(x,y) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2n-1)\sinh((2n-1)\pi\ell/L)} \sin\frac{(2n-1)\pi y}{L} \sinh\frac{(2n-1)\pi x}{L}.$$

Since the solution u of the given problem is $u = u_1 + u_2$, we finally find

$$u(x,y) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2n-1)\sinh((2n-1)\pi L/\ell)} \sin\frac{(2n-1)\pi x}{\ell} \cdot \left(\sinh\frac{(2n-1)\pi y}{\ell} + \sinh\frac{(2n-1)\pi(L-y)}{\ell}\right) + \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2n-1)\sinh((2n-1)\pi\ell/L)} \sin\frac{(2n-1)\pi y}{L} \sinh\frac{(2n-1)\pi x}{L}.$$

We remark that a somewhat simpler method is to observe that the boundary values 1 on all four sides of the rectangle would trivially give a solution which is identically 1 in the rectangle. Thus 1 - u solves a Dirchlet problem with value 1 on one rectangle side and 0 on the other three sides. In this way, one can write expressions for 1 - u and u of the above type but shorter.

In the case $\lambda < 0$ we let $\lambda = -\mu^2$ with $\mu > 0$. Then the general solution of the differential equation is $f(x) = a \cosh \mu x + b \sinh \mu x$. The first boundary condition implies a = 0, and the second leads to $b\mu \cosh \mu = -b \sinh \mu$. We get $\tanh \mu = -\mu$, an equation which has no solution $\mu > 0$. Thus there are no negative eigenvalues.

For $\lambda = 0$ we get solutions f(x) = ax + b, and the boundary conditions imply b = 0 and a = -a, so that a = b = 0. This means that 0 is not an eigenvalue.

For $0 < \lambda < 50$ we let $\lambda = \nu^2$ with $0 < \nu < \sqrt{50}$. The solutions of the differential equation are $f(x) = a \cos \nu x + b \sin \nu x$, and the boundary

^{6.}

conditions imply a = 0 and $b\nu \cos \nu = -\sin \nu$, so that $\tan \nu = -\nu$. We must thus determine the number of solution of the equation $\tan \nu = -\nu$ with $0 < \nu < \sqrt{50}$. In the ν, y plane, this means the number of intersections between the line $y = -\nu$ and the curve $y = \tan \nu$, with ν in the indicated interval. It is immediately seen that the line has precisely one intersection with each branch of the tan curve, and in particular one intersection in each interval $(n - 1/2)\pi < \nu < n\pi$, $n = 1, 2, \ldots$ We must thus determine how many of these intersections that fall in $0 < \nu < \sqrt{50}$. But $\sqrt{50} > 2\pi$, since (equivalently) $\pi^2 < 12.5$. And $\sqrt{50} < 2.5\pi$, since $\pi^2 > 8$. This means that we get the first two intersections, and the final answer is two.