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1. Let the function f be piecewise continuous in the interval [—7, 7]. De-
duce the formula for the complex Fourier coefficients of f and the rela-
tions between the real and complex coefficients. Also show how one by
means of Fourier series in [—m, 7] can derive the expansion in a Fourier
cosine series of a function in the interval [0, 7], and do the same for the
sine series.

2. Assume that (¢ )nen is an orthonormal system in PC|a, b]. Define com-
pleteness of this system and state the theorem saying that completeness
is equivalent to each of two other properties of (¢,)nen-

3. Compute the Fourier series of the function ¢“® in the interval [—1, 1],
in real form, i.e., with cosine and sine functions. Here a > 0.

4. Compute the convolution

2/ 2 2
6x/3*6x/4*€x/5’

for instance by means of Fourier transforms.

5. Solve the initial value problem

ur(z,t) = kug(x,t)+sinz, O<z<m t>0
u(0,t) = 0, wu(mt)=0
u(z,0) = 2—sinz.

Here k£ > 0 is a constant.

Please turn over



6. Let r and 6, —m < 0 < m, denote polar coordinates in the plane. Solve
the following Dirichlet problem in the ring {Ry < r < R;}.

Au = 0, Ry <r < Ry
0 for all @,
u(Ry,0) = 1if |#] <7/2 and 0 otherwise.

=
A
e
=
I

In polar coordinates

Au = Upr + 17 Uy 4 7 2ugp.

The grading will be finished by 26 January. You may then see your exam
paper in the office of the new building of Mathematical Sciences weekdays
from 8.30 to 13.00.
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3.

One can compute the Fourier sine and cosine coefficients directly, but we shall
here go via the complex Fourier coefficients, to get slightly simpler integrals.
In the interval [—1,1], the functions to be used are then ™. We observe
first of all that if a is an integer multiple of 7, say a = N, then
€' = cos Nmx + isin Nz.

This is already the desired Fourier series in this case.

So assume now that a is not a multiple of 7. Then the complex Fourier
coefficients of the given function are

¢, = 1/1 eiaaze—imra: dr = 1 (ei(a—nw) . e—i(a—mr))
2/, 2i(a — nm)
1 sina
— sin(a — nmw) = (—1) —

for n € Z. Using the relations between the real and complex Fourier coeffici-
ents, we get for n > 0

1 1 2
ap =¢cp+c_p,=(—1)"sina < + > = (—1)"sina—a

a—nmT  a-+nw a? — n2m?
and
) . . 1 1 ) . 2nm
b, = i(cp,—c_y) =i(—1)"sina — =i(=1)"sina ———.
a—nmt a+nmw a* —n-m
Moreover,
sin a
ag = 260 =2
a
This means that the Fourier series of e'** is
. o
sina " 1 . .
+2(—1)"sina E ————(acosnmx + inTsinnrx).
a a? — n2x 2

1



4.

The Fourier transform of this convolution is the product of the Fourier trans-
forms of the three factor functions. From the table, we know that the trans-
form of e=9*/2 is \ /21 /ae~€/%*. So the product of the three transforms is

V3 e 3 A g e B e 58 = 932\ /15 1204,
But this is similarly the Fourier transform of the function
mV/5e /12,

The given convolution coincides with this function, since the two have the
same Fourier transform.

3.

The equation is inhomogeneous because of the term sinz. Since this term
does not depend on ¢, one can use a steady-state solution wug(x). Then ug
should satisfy the equation, so that 0 = k(ug)., + sinx. Integrating twice,
we get ug(x) = k~'sinz + ax + b. Here one determines the constants a
and b so as to make ug fulfill the boundary conditions uy(0) = wuy(7) = 0.
This leads to b = 0 and a = 0, and thus ug(z) = k~'sinz. The difference
v(z,t) = u(x,t) — up(x) will now satisfy

vi(x,t) = kug(x,t)

v(0,t) = 0, w(mt)=0

v(x,0) = 2—(14+k )sina.
This is a standard problem. We expand the initial value function 2 — (1 +
k~!)sinx in a sine series in [0, 7]. Using entry 6 in the table to expand the

constant function and observing that the second term —(1+%~!) sin z already
has the right form, we get

1 8 1Y . 8 = sin(2n — 1)z
2 (14 k! (21—~ SN R
(1+ %k )sinz (7r k) Sm:zc%—wnz2 T

Then the solution v is given by

8 1 8x= |
v(x,t) = (; —-1- E) e Fsinx + - Lz:; S 1e_k(2”_1)2t sin(2n — 1)x.



This means that the solution u = v 4 uq of the given problem is

8 1 1 8 | 2
= —_— 1 — — —kt — ] _ *k(2n71) t . 2 _1 )
u(x,t) ((7T k)e + k) 51nx+7rn2:2 5y 1° sin(2n—1)x

6.

We know that separation of variables produces an expression for the solution
u of the form

u(r,0) = ag+ bgIlnr + Z e (anr™ 4 byr ™).
n#0

The coefficients can be determined by means of the boundary conditions.
Letting » = Ry, we get

ao + boIn Ry + Z eme(anRg + bnRO_n) =0
n#0

for all A. But this is a Fourier series in #, so all its coefficients must be 0.
Thus

ag +bolnRy = 0 (1)
an Rl + bRy = 0, n#0. (2)

For r = Ry, we need to expand the given boundary value function xjs|<x/2} in
a Fourier series. Entry 12 in the table, with a = 7/2 and after multiplication
by 2a = 7, tells us that
1 2 Xsinnm/2
o/ = — + — ———cosnb.
X{101</2} 2+W2: n
Now sinnm/2 is 0 for even n and equals (—1)**! for n = 2k — 1. Rewriting
the cosine function in term of exponentials with imaginary exponents, we get

L= (DR ke L ik-1)a
kawn—-'+;§;—————@ T e )-

2k —1

N | —

This Fourier series must coincide with the one obtained by setting » = R; in
the series for u above. Therefore,

1
ag +boIn Ry = o (3)



and

g R by Ry = DT (4)
2k—1 1 2k—1 1 7T<2]€—]_)’ b A
and
(2h— —1)k+1
a_r-1)1 - + [7—(2/&—1)1"2%’%1 = %7 k=12, ... (5)

For even n # 0, we see that a,R} + b,R;" = 0. Together with (2), this
implies that a,, = b, = 0 for such n. To get the other coefficients, we first
observe that (1) and (3) easily lead to

1I1R0 and b 1
e — n = .
2In Ry /Ry *” 2InR, /Ry

ap =
Combining (2) and (4), one finds that

(ok—1 = )™ R%kil
- _ 2(2k—1 2(2k—-1)?
7T(2k 1) Rl( ) RO( )

k=12, ...

and
(D" RURP
7r(2k _ 1) R%(Qk—l) . R§(2k—1)’

bop—1 = k=1,2,...

To simplify the computation of a_(o;_1) and b_(g_1), we observe that (2) and
(5) say that the couple (a_(2k—1), b—_(2x—1)) satisfies the same two equations as
the Couple (b2k—17 CLQk_l), for k = 1, 2, .... Thus a_(Qk_l) = b2k—1 and b—(2k—1) =
asr—1. Notice that this implies

a—(2k—l)T_(2k_1) + b—(2k—l)T2k_1 = o177 4 by D),
Inserting the above expressions for asr_1 and bgy_q, we find that

(_1)k+1 R%kz—%qu _ Rg(Qk—l)R%k—lr—(Qkfl)
7r(2k _ 1) R%(%—l) . R§(2k—1)

2%—1 —(2k—1
Aok—17T + bog_17 ( ) =

In the formula for u, we can combine the terms with n and —n and get the
final result

Inr/Ry
21n Rl/Ro
9 (_1)k+1 R2k—1,.2k—1 _R2(2k—1)R2k—1r7(2k71)
+ - Z ! - L cos(2k — 1)6.

_ 2(2k—1 2(2k—1
™ 2k —1 Rl( ) _ RO( )

u(r,0) =




