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Exam in Fourier Analysis

MAN 530, TMA362

1. Let the function f be piecewise continuous in the interval [−π, π]. De-
duce the formula for the complex Fourier coe�cients of f and the rela-
tions between the real and complex coe�cients. Also show how one by
means of Fourier series in [−π, π] can derive the expansion in a Fourier
cosine series of a function in the interval [0, π], and do the same for the
sine series.

2. Assume that (φn)n∈N is an orthonormal system in PC[a, b]. De�ne com-
pleteness of this system and state the theorem saying that completeness
is equivalent to each of two other properties of (φn)n∈N.

3. Compute the Fourier series of the function eiax in the interval [−1, 1],
in real form, i.e., with cosine and sine functions. Here a > 0.

4. Compute the convolution

e−x2/3 ∗ e−x2/4 ∗ e−x2/5,

for instance by means of Fourier transforms.

5. Solve the initial value problem

ut(x, t) = k uxx(x, t) + sin x, 0 < x < π, t > 0

u(0, t) = 0, u(π, t) = 0

u(x, 0) = 2− sin x.

Here k > 0 is a constant.

Please turn over



6. Let r and θ, −π < θ ≤ π, denote polar coordinates in the plane. Solve
the following Dirichlet problem in the ring {R0 < r < R1}.

∆u = 0, R0 < r < R1

u(R0, θ) = 0 for all θ,

u(R1, θ) = 1 if |θ| < π/2 and 0 otherwise.

In polar coordinates

∆u = urr + r−1ur + r−2uθθ.

The grading will be �nished by 26 January. You may then see your exam
paper in the o�ce of the new building of Mathematical Sciences weekdays
from 8.30 to 13.00.
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Solutions to

exam in Fourier Analysis

MAN 530, TMA362
9 January 2006

3.

One can compute the Fourier sine and cosine coe�cients directly, but we shall
here go via the complex Fourier coe�cients, to get slightly simpler integrals.
In the interval [−1, 1], the functions to be used are then einπx. We observe
�rst of all that if a is an integer multiple of π, say a = Nπ, then

eiax = cos Nπx + i sin Nπx.

This is already the desired Fourier series in this case.
So assume now that a is not a multiple of π. Then the complex Fourier

coe�cients of the given function are

cn =
1

2

∫ 1

−1

eiaxe−inπx dx =
1

2i(a− nπ)

(
ei(a−nπ) − e−i(a−nπ)

)
=

1

a− nπ
sin(a− nπ) = (−1)n sin a

a− nπ
,

for n ∈ Z. Using the relations between the real and complex Fourier coe�ci-
ents, we get for n > 0

an = cn + c−n = (−1)n sin a

(
1

a− nπ
+

1

a + nπ

)
= (−1)n sin a

2a

a2 − n2π2

and

bn = i(cn−c−n) = i(−1)n sin a

(
1

a− nπ
− 1

a + nπ

)
= i(−1)n sin a

2nπ

a2 − n2π2
.

Moreover,

a0 = 2c0 = 2
sin a

a
.

This means that the Fourier series of eiax is

sin a

a
+ 2(−1)n sin a

∞∑
1

1

a2 − n2π2
(a cos nπx + inπ sin nπx).
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4.

The Fourier transform of this convolution is the product of the Fourier trans-
forms of the three factor functions. From the table, we know that the trans-
form of e−ax2/2 is

√
2π/a e−ξ2/2a. So the product of the three transforms is

√
3π e−3ξ2/4

√
4π e−4ξ2/4

√
5π e−5ξ2/4 = 2π3/2

√
15 e−12ξ2/4.

But this is similarly the Fourier transform of the function

π
√

5e−x2/12.

The given convolution coincides with this function, since the two have the
same Fourier transform.

5.

The equation is inhomogeneous because of the term sin x. Since this term
does not depend on t, one can use a steady-state solution u0(x). Then u0

should satisfy the equation, so that 0 = k(u0)xx + sin x. Integrating twice,
we get u0(x) = k−1 sin x + ax + b. Here one determines the constants a
and b so as to make u0 ful�ll the boundary conditions u0(0) = u0(π) = 0.
This leads to b = 0 and a = 0, and thus u0(x) = k−1 sin x. The di�erence
v(x, t) = u(x, t)− u0(x) will now satisfy

vt(x, t) = k vxx(x, t)

v(0, t) = 0, v(π, t) = 0

v(x, 0) = 2− (1 + k−1) sin x.

This is a standard problem. We expand the initial value function 2 − (1 +
k−1) sin x in a sine series in [0, π]. Using entry 6 in the table to expand the
constant function and observing that the second term −(1+k−1) sin x already
has the right form, we get

2− (1 + k−1) sin x =

(
8

π
− 1− 1

k

)
sin x +

8

π

∞∑
n=2

sin(2n− 1)x

2n− 1
.

Then the solution v is given by

v(x, t) =

(
8

π
− 1− 1

k

)
e−kt sin x +

8

π

∞∑
n=2

1

2n− 1
e−k(2n−1)2t sin(2n− 1)x.
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This means that the solution u = v + u0 of the given problem is

u(x, t) =

((
8

π
− 1− 1

k

)
e−kt +

1

k

)
sin x +

8

π

∞∑
n=2

1

2n− 1
e−k(2n−1)2t sin(2n−1)x.

6.

We know that separation of variables produces an expression for the solution
u of the form

u(r, θ) = a0 + b0 ln r +
∑
n6=0

einθ(anr
n + bnr

−n).

The coe�cients can be determined by means of the boundary conditions.
Letting r = R0, we get

a0 + b0 ln R0 +
∑
n6=0

einθ(anR
n
0 + bnR

−n
0 ) = 0

for all θ. But this is a Fourier series in θ, so all its coe�cients must be 0.
Thus

a0 + b0 ln R0 = 0 (1)

anR
n
0 + bnR

−n
0 = 0, n 6= 0. (2)

For r = R1, we need to expand the given boundary value function χ{|θ|<π/2} in
a Fourier series. Entry 12 in the table, with a = π/2 and after multiplication
by 2a = π, tells us that

χ{|θ|<π/2} =
1

2
+

2

π

∞∑
1

sin nπ/2

n
cos nθ.

Now sin nπ/2 is 0 for even n and equals (−1)k+1 for n = 2k − 1. Rewriting
the cosine function in term of exponentials with imaginary exponents, we get

χ{|θ|<π/2} =
1

2
+

1

π

∞∑
1

(−1)k+1

2k − 1

(
ei(2k−1)θ + e−i(2k−1)θ

)
.

This Fourier series must coincide with the one obtained by setting r = R1 in
the series for u above. Therefore,

a0 + b0 ln R1 =
1

2
(3)
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and

a2k−1R
2k−1
1 + b2k−1R

−(2k−1)
1 =

(−1)k+1

π(2k − 1)
, k = 1, 2, ... (4)

and

a−(2k−1)R
−(2k−1)
1 + b−(2k−1)R

2k−1
1 =

(−1)k+1

π(2k − 1)
, k = 1, 2, .... (5)

For even n 6= 0, we see that anR
n
1 + bnR

−n
1 = 0. Together with (2), this

implies that an = bn = 0 for such n. To get the other coe�cients, we �rst
observe that (1) and (3) easily lead to

a0 = − ln R0

2 ln R1/R0

and b0 =
1

2 ln R1/R0

.

Combining (2) and (4), one �nds that

a2k−1 =
(−1)k+1

π(2k − 1)

R2k−1
1

R
2(2k−1)
1 −R

2(2k−1)
0

, k = 1, 2, ...

and

b2k−1 =
(−1)k

π(2k − 1)

R
2(2k−1)
0 R2k−1

1

R
2(2k−1)
1 −R

2(2k−1)
0

, k = 1, 2, ....

To simplify the computation of a−(2k−1) and b−(2k−1), we observe that (2) and
(5) say that the couple (a−(2k−1), b−(2k−1)) satis�es the same two equations as
the couple (b2k−1, a2k−1), for k = 1, 2, ... . Thus a−(2k−1) = b2k−1 and b−(2k−1) =
a2k−1. Notice that this implies

a−(2k−1)r
−(2k−1) + b−(2k−1)r

2k−1 = a2k−1r
2k−1 + b2k−1r

−(2k−1).

Inserting the above expressions for a2k−1 and b2k−1, we �nd that

a2k−1r
2k−1 + b2k−1r

−(2k−1) =
(−1)k+1

π(2k − 1)

R2k−1
1 r2k−1 −R

2(2k−1)
0 R2k−1

1 r−(2k−1)

R
2(2k−1)
1 −R

2(2k−1)
0

In the formula for u, we can combine the terms with n and −n and get the
�nal result

u(r, θ) =
ln r/R0

2 ln R1/R0

+
2

π

∞∑
k=1

(−1)k+1

2k − 1

R2k−1
1 r2k−1 −R

2(2k−1)
0 R2k−1

1 r−(2k−1)

R
2(2k−1)
1 −R

2(2k−1)
0

cos(2k − 1)θ.
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