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There are tons of lecture notes on group actions on the web, for example, search for the very nice
notes by Keith Conrad. Here I just, very briefly, present the most elementary basics. (Let me know
any corrections you find!).

Definition: If G is a group and X is a set, a group action of G on X is a mapping

f : G×X → X

satisfying
(1) f(g1g2, x) = f(g1f(g2, x)) ∀g1, g2 ∈ G, x ∈ X

and
(2) f(e, x) = x ∀x ∈ X

where e is the identity in G.

Remarks. (i). It is simplest to abbreviate f(g, x) by (g, x) which we now do.
(ii). You should think of (g, x) as “the result obtained when g acts on x”. So “g takes x to another
element of X” which we call (g, x).
(iii). The key equality (1) says that if you first let g2 act on x and then act on the result by g1, you end
up with the same thing as you would if you had first multiplied g1 and g2 in the group and then let
the product act on x. (It has a very similar flavor, but not exactly the same thing, as the definition of a
homomorphism of groups.)

Exercise: Show that if you fix g, then the mapping from X to X given by x goes to (g, x) is a bijection.
Is condition (2) in the definition of a group action superfluous?

Example 1. Z acts on Z/12 by (n, x) = x + n. Verify that this is a group action. What is happening
geometrically? If g = 24, what is the corresponding bijection of Z/12?

Example 2. Z/4 acts on Z/8 by (g, x) = 2g + x. Verify that this is a group action.

Exercise. Show that a group action of G on X is equivalent to a group homomorphism from G to SX

where the latter is the symmetric group on X . (Hint. Use the previous exercise).

Group actions (applied to the correct objects) are the nicest way (in my opinion) to prove all of the
Sylow theorems from group theory.

We now discuss the various key players that arise when studying group actions.

Definition. Given a group action, we say x ∼ y if there exists g such that (g, x) = y (i.e., if some g
takes x to y).

Exercise. Show that ∼ is an equivalence relation.

Definition. Given a group action, the equivalence classes for the above equivalence relation are called
orbits.

Definition. A group action is called transitive if there is only one orbit, meaning you can get from
any x to any y using some element of g.

Definition. Given a group action of G on X and given x ∈ X , the stabilizer of x, denoted Sx, is
{g : (g, x) = x}. These are the group elements which send x to itself, hence the word stabilizer.

Exercise. Show that Sx is a subgroup of G.

Exercise. If x and y are in the same orbit, then Sx and Sy are conjugate subgroups; i.e. there exists
g ∈ G so that gSxg

−1 = Sy. (Hint. If g takes x to y, then verify Sx = g−1Syg.)



Lemma. If G is finite and x ∈ X , then the orbit of x, denoted by Ox, is finite and satisfies

|Ox| = [G : Sx]

where the latter denotes the index of the subgroup Sx in G.

Outline of Proof. (Fill in details if needed). Map the left cosets of Sx, denoted by G/Sx, to Ox by
sending gSx to (g, x). You need to verify this map is well-defined and a bijection. Here is why it
is well defined. We need to show that g1Sx = g2Sx implies (g1, x) = (g2, x). But the first equality
says that g−12 g1 is in Sx which implies (g−12 g1, x) = x. Now act by g2 on both sides to obtain
(g1, x) = (g2, x). Check the other details. QED

Corollary. If G is a finite group, then for all x, we have |Ox| divides |G|.

Definition. For g ∈ G, let Fg be {x : (g, x) = x}. This is the set of x fixed by g. (Think of the
similarity and difference between this definition and that of a stabilizer).

Definition. An action is called fixed point free if for all g 6= e, we have Fg = ∅. This means that
every element of g except for the identity (Fe = X of course) moves every x in X .

Further exercise. Show that ∩xSx is the kernel of the homomorphism from G to SX which represents
the group action.

One further topic. Burnside Polya counting. This is just an aside. Read if you want.

Motiviation. Here is a combinatorial problem. You have a pizza with 12 slices and each slice can be
colored in 2 colors. How many ways can you do it? Of course 212. But now I say that if you can
“rotate” one pizza into another, I don’t want to consider them different. So, for example, there is only
1 pizza with 1 black slice and only 1 pizza with 2 black slices which are separated by 4 (of course 4
can be any number here). Now, I ask again how many different pizzas there are. I haven’t thought
so much about it but I would guess that, without any theory, solving it would take a good amount of
time. Here is a way to count it fairly quickly with some theory.

Theorem. Let the finite group G act on the finite set X . Then the number of orbits is

1

|G|
∑
g∈G

|Fg|.

Proof. Consider the set S = {(g, x) ∈ G × X : gx = x}. Note, I changed notation now. Here
(g, x) actually means the pair (g, x) and gx = x means g takes x to x. (The latter should be written
(g, x) = x but that would clearly cause some confusion). In words, S is the set of pairs g and x for
which g fixes x.

We now compute the size of S in two ways, first summing over x and then g and then summing in the
other order. This immediately leads to ∑

g∈G

|Fg| =
∑
x∈X

|Sx|.

Dividing by |G|, we get

1

|G|
∑
g∈G

|Fg| =
∑
x∈X

|Sx|
|G|

=
∑
x∈X

1

[G : |Sx|]
=

∑
x∈X

1

|Ox|

where we used a previous lemma for the last step. Looking at the last expression, what is the contri-
bution to this sum when I sum over x’s in some fixed orbit? It is exactly 1 and so the final sum is the
number of orbits. QED



Coming back to the pizza problem, we let X be the set of all 212 colorings of the pizza. We let the
group Z/12 act on X by rotations. The original question now comes down to asking what the number
of orbits is for this group action.

Using the above theorem, we get
1

12

11∑
i=0

|Fi|.

It is not so hard to show (verify!) that the numbers |F0|, |F1|, . . . , |F11| are 212, 2, 4, 8, 16, 2, 64, 2, 16, 8, 4, 2.
This gives 352 orbits, much smaller than the original 212 = 4096 number of pizzas.


