Mathematical Sciences (MV), GU March 18, 2019, 14:00-18:00.

No aids (closed book, closed notes). Phone: Jeffrey Steif 070-2298318 Presence of teacher: $\sim 15:00$ and $\sim 16:30$

Exam in MMA 100 Topology, 7.5 HEC.

8 problems. 24 points = 8×3 . Grade limits: 12p for Godkänd (Pass). 18p for Väl Godkänd (Very Good). Each problem is graded as a whole; so it is not necessarily the case that if a problem has 4 parts then each part is worth 3/4 of a point.

- 1. In the following X and Y are topological spaces and $A \subseteq X$ and $B \subseteq Y$.
 - [a] Consider the statement $\overline{A \cup B} = \overline{A} \cup \overline{B}$. Prove or give a counterexample.
 - **[b]** Consider the statement $\overline{A \cap B} = \overline{A} \cap \overline{B}$. Prove or give a counterexample.
 - [c] Show that if C and D are closed sets in X and Y respectively, then $C \times D$ is closed in $X \times Y$.
 - [d] Consider the statement $\overline{A \times B} = \overline{A} \times \overline{B}$. Prove or give a counterexample.
- 2. [a] Explain how a metric space gives rise to a topology.

[b] Assume that X and Y are metric spaces which are homeomorphic as topological spaces and assume that X is a complete metric space. Is Y necessarily then a complete metric space? Prove or give a counterexample.

[c] Give an example of a topological space for which each 1 point set is closed but such that the topology does not arise from a metric; i.e., the space is not metrizable. Briefly justify the claim that your example works.

- 3. [a] Prove that a compact subspace of a Hausdorff space is closed.
 - [b] Give a counterexample to [a] if the Hausdorff assumption is removed.

[c] Assuming [a], prove that a continuous bijection from a compact space to a Hausdorff space is a homeomorphism.

[d] Show that [c] is false if the compactness assumption is removed.

4. Consider the set $[0,1]^N$ both in the product topology and in the uniform topology (the latter one is the topology generated by the metric $d(x,y) = \sup_i |x_i - y_i|$). N denotes the positive integers.

[a] Is $[0,1]^N$ in the product topology metrizable? If so, describe a metric which generates it. Give a very brief explanation of why it works.

- **[b]** Is $[0, 1]^N$ in the uniform topology compact? Justify your answer.
- [c] Is the metric space $[0, 1]^N$ in the uniform metric complete? Briefly justify your answer.

[d] Let A be the set of elements in $[0, 1]^N$ which are eventually 0. Determine the closure of A both in the product topology and in the uniform topology. Justify your answer.

- 5. Consider the 2-dimensional plane R^2 equipped with the equivalence relation $(x, y) \sim (x', y')$ if xy = x'y' and consider the resulting quotient space $Y = R^2 / \sim$.
 - [a] Explain what we mean by the "resulting quotient space $Y = R^2 / \sim$ ".
 - [b] Show that Y is T1 meaning that all 1 point sets are closed.
 - [c] Show that Y is homeomorphic to the real numbers.
- 6. [a] State what it means for two mappings from S^1 to a space X to be homotopic.

[b] Let X be a topological space and $a \in X$. State what it means for two paths from a to a to be path-homotopic.

[c] Let X be a topological space and $a \in X$. Let γ_1 , γ_2 and γ_3 be three paths from a to a and let * denote the usual concatenation of paths. Explain why it is not usually the case that $(\gamma_1 * \gamma_2) * \gamma_3 = \gamma_1 * (\gamma_2 * \gamma_3)$. Explain why this does not contradict the associativity property of the fundamental group.

[d] Give an example of a topological space X, an element $a \in X$ and two paths from a to a which are homotopic but not path-homotopic. Explain your answer.

7. [a] Define what it means for a set A to be a retract of X.

[b] If A is a retract of X and both are pathwise connected, show that the homomorphism induced by the inclusion map from A to X is injective.

[c] Give an example of a retract for which the injective homomorphism from part [c] is not a bijection.

[d] Define a deformation retract from X to A, state what it implies about the injective homomorphism from part [c] and give an example of a space where the above can be applied to compute the fundamental group. You can assume that the fundamental group of the circle is Z.

8. [a] Define a covering map. Consider the mapping from $(0, \infty)$ to S^1 given by $x \to e^{2\pi i x}$. Is this a covering map? Why or why not?

[b] If X to A is a covering map, and f is a mapping from some space Y to A, define what a lifting of f is.

[c] Give an example of a mapping f where a lifting does not exist and state some sufficient condition under which it does exist. Give a very brief explanation of why your sufficient condition is in fact sufficient.

[d] Show that a covering map does not necessarily send a closed set to a closed set. It suffices to look at the standard covering map from the real numbers to the circle.