Solution, Exam in MMA 100 Topology, 7.5 HEC. 2012-June 4

- [a] Claim: The connected components are A_n := [n, n + 1). We observe first that [n, m) is both open can closed. Indeed its complement is A^c_n = (-∞, n) ∪ [m, ∞), (-∞, n) = ∪[∞]_{j=1}[n j, n), and [m, ∞) = ∪[∞]_{j=1}[m, m + j), which is open. Now A_n is open and the only nonempty open set in A_n is A_n itself. Thus A_n is not a union of two disjoint open sets, and A_n is connected. Any connected set B containing A_n, A_n ⊊ B, can be written as B = A_n ∪ C, with C = B ∩ A^c_n is open in B since A^c_n is open. Thus B is not connected and A_n is maximal connected subset.
 - [b] Let $f(x) = [x] = \inf\{n; n \ge x\}$, the least integer not less than x. Then f is a map since any open set in \mathbb{Z} is of a union of the one-point sets $\{n\}$, whose inverse image is [n, n+1) which is open. Thus the inverse image of an open set in \mathbb{Z} is open, completing the proof.
- 2. The one-point set $\{y\}$ is closed since Y is Hausdorff. The inverse image $f^{-1}(\{y\})$ is therefore a closed set in X since f is map. Now X is compact and any closed set in X is compact, and in particular $f^{-1}(\{y\})$ is compact.
- 3. Suppose f is map. Recall first that for any subset C, we have $C^0 \subset C$ is open and for any open set $D \subseteq C$ we have $C \subseteq C^0$. Now for any $A \subseteq Y$ we have $A^0 \subseteq A$ is open. Thus $f^{-1}(A^0)$ is open. But $f^{-1}(A^0) \subseteq f^{-1}(A)$, and $(f^{-1}(A))^0$ is the largest subset contained in $f^{-1}(A)$. Thus $f^{-1}(A^0) \subseteq (f^{-1}(A))^0$.

Conversely suppose $f^{-1}(A^0) \subseteq (f^{-1}(A))^0$ for any A. Let B be any open set in Y. We have $B^0 = B$. Thus $f^{-1}(B) = f^{-1}(B^0) \subseteq (f^{-1}(B))^0 \subset f^{-1}(B)$. That is $f^{-1}(B) = (f^{-1}(B))^0$ is open. f is a map by definition.

- 4. See the Textbook
- 5. [a] The identification map f is not open. Take A the open interval A = (-¹/₄, ¹/₄) in ℝ and let B = f(A) be its image. The inverse image of B is A ∪ ℤ, which is not open, and thus B is not open. [b] ℝ/ℤ is not compact. Let A_n = (n ¹/_{n+1}, n + ¹/_{n+1}) ∪ ∪[∞]_{|j|≥n+1}(j ¹/_{n+2}, j + ¹/_{n+2}), and B_n = f(A_n) = A_n/ℤ, n ≥ 2. Then B_n is open in ℝ/ℤ since its inverse image is A_n which is open, for any n. {B_n} is then a cover of ℝ/ℤ and has no finite subcover. Indeed any finitely many subsets in B_n is covered by {B_n, |n| ≤ N} for some big N. But the bigger family does not cover the point N + ¹/₂.
- 6. [a] See the Textbook
 - **[b]** Let $f: S \to S^2 \setminus \{n, s\}$ be the inclusion map. Let P be the orthogonal projection of \mathbb{R}^3 onto the x_1x_2 -plane \mathbb{R}^2 , and let $R: \mathbb{R}^2 \setminus \{0\} \to S$ the projection onto S along the rays, i.e. Rx = x/|x|. Define $g: S^2 \setminus \{n, s\} \to S$ by g = RP. We have the maps $S \xrightarrow{f} S^2 \setminus \{n, s\} \xrightarrow{g} S \xrightarrow{f} S^2 \setminus \{n, s\}$. Now $g \circ f = Id$ and we claim $f \circ g \sim {}_{homotopy}Id$. For any $x \in S^2 \setminus \{n, s\}$, denote $\theta(x)$ the angle between x and the x_1x_2 -plane and \mathbb{P}_x the plane passing the three points, $0, g(x) \in \mathbb{R}^2$ and x. We let $F_t = F(\cdot, t): S^2 \setminus \{n, s\} \to S^2 \setminus \{n, s\}$ be the map defined by

 $F_t(x)$ is the point in the plane \mathbb{P}_x of angle $t\theta(x)$ to the vector g(x),

for $0 \le t \le 1$. Thus $F_1 = I$ and $F_0 = g = f \circ g$. Thus completes the proof of the claim.

7. Let $f: S \times \mathbb{R} \to S \times \mathbb{R}$, $(c, x) \mapsto (e^{-ix}c, x)$. Then f is a homeomorphism and its inverse is given by

$$f^{-1}: (c, x) \mapsto (e^{ix}c, x).$$

By conjugating f the action $n : (c, x) \mapsto n \cdot (c, x) \mathbb{Z}$ on $S \times \mathbb{R}$ defines an action $f^{-1} \circ n \circ f : (d, x) \mapsto f \circ n \circ f^{-1}$ on $S \times \mathbb{R}$. To find the quotient space $S \times \mathbb{R}$ under the orginal action is the same as to find that under $f \circ n \circ f^{-1}$. But now

$$f^{-1} \circ n \circ f: (d,x) \mapsto (e^{-ix}d,x) \mapsto (e^{-ix}de^{in},x+n) \mapsto (e^{-ix}de^{in}e^{-i(x+n)},x+n) = (d,x+n).$$

In other words the action $f^{-1} \circ n \circ f$ is the action of \mathbb{Z} on the cylinder $S \times \mathbb{R}$ translating \mathbb{R} with integers. Thus the orbit space $S \times \mathbb{R}/\mathbb{Z}$ (under the action $f^{-1} \circ n \circ f$) is the torus $S \times S$.

- 8. We prove that Y is homeomorphic to the punctured plane $\mathbb{R}^2 \setminus \{0\}$. The space Y consists of the lines [x] with $x = (x_1, x_2, x_3)$, and $x_3 \neq 0$ and $(x_1, x_2) \neq (0, 0)$. By multiplying the representative x by $\frac{1}{x_3}$ we see that each line [x] in Y can be uniquely written as [y] with $y = (y_1, y_2, 1)$, and $(y_1, y_2) \neq (0, 0)$, in other words $(y_1, y_2) \in \mathbb{R}^2 \setminus \{0\}$. Now consider the map $f: Y \to \mathbb{R}^2 \setminus \{0\}, [x] \mapsto \frac{1}{x_3}(x_1, x_2) \in \mathbb{R}^2 \setminus \{0\}$ and $g: \mathbb{R}^2 \setminus \{0\} \to Y, (y_1, y_2) \mapsto [(y_1, y_2, 1)]$. We have then $f \circ g = Id, g \circ f = Id$. Thus Y is homeomorphic to $\mathbb{R}^2 \setminus \{0\}$.
 - [a] Y is path-connected since $\mathbb{R}^2 \setminus \{0\}$ is.
 - **[b]** The fundamental group of Y is that of $\mathbb{R}^2 \setminus \{0\}$, which is \mathbb{Z} .