
Solution, Exam in MMA 100 Topology, 7.5 HEC. 2012-June 4

1. [a] Claim: The connected components are An := [n, n + 1). We observe first that [n,m) is

both open can closed. Indeed its complement is Ac
n = (−∞, n) ∪ [m,∞), (−∞, n) =

∪∞
j=1[n − j, n), and [m,∞) = ∪∞

j=1[m,m + j), which is open. Now An is open and the

only nonempty open set in An is An itself. Thus An is not a union of two disjoint open

sets, and An is connected. Any connected set B containing An, An ( B, can be written

as B = An∪C, with C = B∩Ac
n is open in B since Ac

n is open. Thus B is not connected

and An is maximal connected subset.

[b] Let f(x) = [x] = inf{n;n ≥ x}, the least integer not less than x. Then f is a map since

any open set in Z is of a union of the one-point sets {n}, whose inverse image is [n, n+1)
which is open. Thus the inverse image of an open set in Z is open, completing the proof.

2. The one-point set {y} is closed since Y is Hausdorff. The inverse image f−1({y}) is therefore

a closed set in X since f is map. Now X is compact and any closed set in X is compact, and

in particular f−1({y}) is compact.

3. Suppose f is map. Recall first that for any subset C, we have C0 ⊂ C is open and for any open

set D ⊆ C we have C ⊆ C0. Now for any A ⊆ Y we have A0 ⊆ A is open. Thus f−1(A0) is

open. But f−1(A0) ⊆ f−1(A), and (f−1(A))
0

is the largest subset contained in f−1(A). Thus

f−1(A0) ⊆ (f−1(A))
0
.

Conversely suppose f−1(A0) ⊆ (f−1(A))
0

for any A. Let B be any open set in Y . We have

B0 = B. Thus f−1(B) = f−1(B0) ⊆ (f−1(B))
0
⊂ f−1(B). That is f−1(B) = (f−1(B))

0
is

open. f is a map by definition.

4. See the Textbook

5. [a] The identification map f is not open. Take A the open interval A = (−1
4
, 1
4
) in R and let

B = f(A) be its image. The inverse image of B is A ∪ Z, which is not open, and thus B is not

open. [b] R/Z is not compact. Let An = (n − 1
n+1

, n + 1
n+1

) ∪ ∪∞
|j|≥n+1(j −

1
n+2

, j + 1
n+2

),

and Bn = f(An) = An/Z, n ≥ 2. Then Bn is open in R/Z since its inverse image is An which

is open, for any n. {Bn} is then a cover of R/Z and has no finite subcover. Indeed any finitely

many subsets in Bn is covered by {Bn, |n| ≤ N} for some big N . But the bigger family does

not cover the point N + 1
2
.

6. [a] See the Textbook

[b] Let f : S → S2 \ {n, s} be the inclusion map. Let P be the orthogonal projection of

R3 onto the x1x2-plane R2, and let R : R2 − \{0} → S the projection onto S along the

rays, i.e. Rx = x/|x|. Define g : S2 \ {n, s} → S by g = RP . We have the maps

S
f
→ S2 \ {n, s}

g
→ S

f
→ S2 \ {n, s}. Now g ◦ f = Id and we claim f ◦ g ∼ homotopyId.

For any x ∈ S2 \ {n, s}, denote θ(x) the angle between x and the x1x2-plane and Px the

plane passing the three points, 0, g(x) ∈ R2 and x. We let Ft = F (·, t) : S2 \ {n, s} →
S2 \ {n, s} be the map defined by

Ft(x) is the point in the plane Px of angle tθ(x) to the vector g(x),

for 0 ≤ t ≤ 1. Thus F1 = I and F0 = g = f ◦ g. Thus completes the proof of the claim.



7. Let f : S × R → S × R, (c, x) 7→ (e−ixc, x). Then f is a homeomorphism and its inverse is

given by

f−1 : (c, x) 7→ (eixc, x).

By conjugating f the action n : (c, x) 7→ n · (c, x) Z on S × R defines an action f−1 ◦ n ◦ f :
(d, x) 7→ f ◦n ◦ f−1 on S ×R. To find the quotient space S×R under the orginal action is the

same as to find that under f ◦ n ◦ f−1. But now

f−1◦n◦f : (d, x) 7→ (e−ixd, x) 7→ (e−ixdein, x+n) 7→ (e−ixdeine−i(x+n), x+n) = (d, x+n).

In otherwords the action f−1 ◦ n ◦ f is the action of Z on the cylinder S ×R translating R with

integers. Thus the orbit space S × R/Z (under the action f−1 ◦ n ◦ f ) is the torus S × S.

8. We prove that Y is homeomorphic to the punctured plane R2 \ {0}. The space Y consists

of the lines [x] with x = (x1, x2, x3), and x3 6= 0 and (x1, x2) 6= (0, 0). By multiplying

the representative x by 1
x3

we see that each line [x] in Y can be uniquely written as [y] with

y = (y1, y2, 1), and (y1, y2) 6= (0, 0), in other words (y1, y2) ∈ R2 \ {0}. Now consider the map

f : Y → R2 \ {0}, [x] 7→ 1
x3

(x1, x2) ∈ R2 \ {0} and g : R2 \ {0} → Y , (y1, y2) 7→ [(y1, y2, 1)].

We have then f ◦ g = Id, g ◦ f = Id. Thus Y is homeomorphic to R2 \ {0}.

[a] Y is path-connected since R2 \ {0} is.

[b] The fundamental group of Y is that of R2 \ {0}, which is Z.


