Mathematical Sciences (MV), GU June 4, 2012, 8:30-12:30.

No aids (closed book, closed notes). Phone: Urban Larsson, 0703-088304 Presence of teacher: ~ 9.30 and ~ 11.30

Exam in MMA 100 Topology, 7.5 HEC.

- 1. We define a topology \mathcal{U} on the real line \mathbb{R} so that the collection of intervals $\{[n, m); n, m \in \mathbb{Z}\}$ forms a base of \mathcal{U} , i.e., \mathcal{U} consists of unions and finite intersections of these intervals [n, m).
 - [a] Find the connected components of $(\mathbb{R}, \mathcal{U})$.
 - **[b]** Prove that the identity map $I_{\mathbb{Z}} : \mathbb{Z} \to \mathbb{Z}$ can be extended to a map from $(\mathbb{R}, \mathcal{U})$ to \mathbb{Z} . Here \mathbb{Z} is equipped with the discrete topology. (1+2p)
- 2. Let $f: X \to Y$ be a map where X is compact and Y is Haussdorff. Prove that for any $y \in Y$ the inverse image $f^{-1}(\{y\})$ is compact. (3p)
- 3. Prove that a function $f : X \to Y$ is a map if and only if $f^{-1}(A^0) \subseteq (f^{-1}(A))^0$ for any subset $A \subseteq Y$. (Recall that B^0 denotes the set of interior points of a subset B.) (3p)
- 4. Let G be a topological group and let K be the connected component containing the identity of G. Prove that K is a closed normal subgroup of G.(3p)
- Consider the identification space R/Z by identifying all the integers Z as a single point and each non-integer point as itself. Prove or disprove the following claims: [a] The natural identification map R → R/Z is open (i.e. taking open sets to open sets); [b] R/Z is compact. (1+2p)
- 6. [a] Formulate the definition that two spaces A and B are of the same homotopy type.
 - [b] Let n and s be the north and south poles of the 2-sphere S^2 . Prove that $X = S^2 \setminus \{n, s\}$ (i.e. the sphere with the south and north poles removed) is of the same homotopy type as the circle S. (1+2p)
- 7. We parametrize the circle S as the subset S = {c ∈ C; |c| = 1} in the plane C and consider the action of Z on S × R defined by n · (c, x) = (ceⁱⁿ, x + n), n ∈ Z. Prove that the orbit space S × R/Z is homeomorphic to the torus S × S. (Hint: Consider the homeomorphism (c, x) → (e^{-ix}c, x) of S × R and the induced map on S × R/Z.) (3p)
- 8. Recall that the projective space P² is the orbit space R³ \ {0}/R* where R* acts on R³ \ {0} by scalar multiplication (i.e. P² is the set of lines [x] through 0 in R³). Let X be the subset of P² of lines in x₁x₂-plane, X = {[x] ∈ P²; x = (x₁, x₂, 0)} and [e₃] the x₃-axis, and let Y be P² with X and [e₃] removed, Y = P² \ (X ∪ {[e₃]}).
 - **[a]** Prove that *Y* is path-connected.
 - [**b**] Find the fundamental group of *Y*.

Grade limits: 12p for Godkänd (Pass), 18p for Väl Godkänd (Very Good). GZ

(1+2p)