Mathematical Sciences (MV), GU March 9, 2012, 8:30-12:30.

Exam in MMA 100 Topology, 7.5 HEC.

- 1. Let \mathcal{U} be the collection of the subsets of \mathbb{R} of the form (a, ∞) , $a \in \mathbb{R}$ together with \mathbb{R} and the empty set \emptyset . The collection \mathcal{U} defines then a topology on \mathbb{R} . Prove that a subset A in $(\mathbb{R}, \mathcal{U})$ is compact if and only if A exists and is in A, where A is the infimum of the set A. (3p)
- 2. Suppose A and B are two compact subset of a Haussdorff space X and $A \cap B = \emptyset$. Prove that there exist open sets U and V such that $A \subseteq U$, $B \subseteq V$, and $U \cap V = \emptyset$. (3p)
- 3. Let $M_1(I, S^1)$ be the space of all loops in the unit circle S^1 based at $1 \in S^1$ equipped with the metric $d(f,g) = \sup_{x \in I} |f(x) g(x)|$, and let e_1 be the trivial loop at 1.
 - [a] Prove that if $f \in M_1(I, S^1)$ and $d(f, e_1) < 2$ then f is homotopic to e_1 .
 - **[b]** Prove that if $f, g \in M_1(I, S^1)$ and d(f, g) < 2 then f is homotopic to g. (Hint: Use [a])
 - [c] Prove that $M_1(I, S^1)$ has infinitely many connected components. (Hint: Use [b])

(1p+1p+1p)

- 4. Formulate the definition of a covering map $\pi : \tilde{X} \to X$. Prove by definition that if $\pi : \tilde{X} \to X$ is a covering then π is an open map. (3p)
- 5. Prove that a connected open subset of the Euclidean space \mathbb{R}^n is path-connected. (3p)
- 6. Let A be the space \mathbb{R}^3 with the z-axis removed. Find the fundamental group $\pi_1(A)$. Give detailed proof of your claim. (3p)
- 7. Suppose H is a closed subgroup of a topological group G (with identity e).
 - [a] Suppose $g_0 \notin H$. Prove that there exist a neighborhood U_0 of g_0 and neighborhoods U, V of e such that $U_0 \cap H = \emptyset$, $U^{-1}g_0V \subseteq U_0$, where $U^{-1}g_0V$ is the short-hand notation for the set $\{u^{-1}g_0v; u \in U, v \in V\}$.
 - **[b]** Prove that G/H is Haussdorff. (Hint: Enough to consider the two point $[g_0] = g_0 H$ and [e] in **[a]**)

$$(1.5p+1.5p)$$

- 8. View \mathbb{R}^{n+1} as a subspace \mathbb{R}^{n+k+1} by identifying $x \in \mathbb{R}^{n+1}$ with $(x, 0) \in \mathbb{R}^{n+k+1}$, and thus the sphere S^n as a subset of S^{n+k} .
 - [a] Prove that $S^3 \setminus S^2$ is disconnected.
 - [b] Prove that $S^3 \setminus S^1$ is path-connected and find its fundamental group. (Hint: Use the identification S^3 as the orbit space $(\mathbb{R}^4 \setminus \{0\})/\mathbb{R}^+$ or the stereographic projection of $S^3 \setminus \{N\}$ onto \mathbb{R}^3 to visualize $S^3 \setminus S^1$.)

(1p+2p)