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Exam in MMA 100 Topology, 7.5 HEC.

1. Let X be a topological space. Prove or disprove the following statements for subsets of X:
(a) AU B = A U B. (A stands for the closure of A).
(b) 0AN OB = 0(AN B). (OA = AN A¢ stands for the boundary of A).

Solution. (a) True statement. We have A C AUB, B C AUB, and thus ACA U B, BcC
AU B, implying AU B C AU B. Conversely if ¢ AU Bthenz ¢ Aand x ¢ B. There
exist Uy and Uy such that Uy N A = (0, Uy N B = (). Take U = U; N Us, a neighborhood of
x. Then

UN(AUB)=(UnAUUNB)C(UiNnA)U(U;NB)=0.

Thus = ¢ AU B. This finished the proof.
(b) False. Take A = (—1,0), B = (0,1).

2. LetR* = {x € R;z # 0} and Rt = {z € R;x > 0} be the set of non-zero respectively
positive real numbers. Consider the map f : R* — RT f(x) = z°. We define a new
topology N on R* be requiring that the open sets are of the form f~!(O), where O C RT
are open sets in R* (equpped with the standard Euclidean topology). Prove that (R*, \) is
connected and non-Haussdorff.

Solution. Let R* = A U B be a disjoint union of two non-empty open sets. We shall
prove this leads to a contradiction. By the definition of open sets in R* and that any open
set in R* is a disjoint union of open intervals (a,b), 0 < a < b, we see that A is a disjoint
union of open intervals of the form (a,b), (—b, —a). In otherwords f is an open map, and
we have Rt = f(A) U f(B) and f(A) and f(B) are open sets. Now if f(a) = f(b) for
a € A,b € B we have that a = +b but A is open and contains +a thus b = +a is in A,
contradicting A N B = (). In other words, we have RT = f(A) U f(B), a union of two
disjoint open sets, contradicting that R™ is connected.

Take the points 1, —1. They are distincts but are always in one neighborhood. Thus it is not
Haussdorff.

3. Let S be the unit circle in the plane R?, and X be the subset of the product S x S consisting
of non-parallell unit vectors (z,y). We equipp S x S with the product topology and X the
subset topology. Answer the following questions with proofs: (a) Is X a compact set? (b)
Isthemap f : X — S, f(u,v) = u, a closed map (i.e., mapping closed sets to closed sets)?

Solution. (a) X is not compact. S x .S is a compact set and Haussdorff. Thus X C S x .S
is compact iff it is closed. But the complement of X is the set {(z, +x) € S x S,z € S},
and is closed (in fact compact). Thus X is open in S X S and is not closed (as the only open
and closed non-empty set in S x .S is the total space since it is connected.) (Alternatively
we may take a sequence of the form (e, p,) in X with p,, approaching 1 and see that X is
not closed.)

(b) Not a closed map. Let e; be the unit basis vector in S and consider U = {(p,e;) €
X;p # e1} then U is a closed set since its closure in X is itself. However the projection p
maps U onto the set {p;p # e, } in S which is clearly not closed.



4. Prove that the orthogonal group O(2n + 1) and Zy x SO(2n + 1) are homeomorphic as
topological spaces and isomorphic as groups. Prove that O(2) and Zy x SO(2) are not
isomorphic.

Solution. We realize Z5 as {£1}. Notive first each element x € O(m) has its determi-
nant being 1. Now we consider the map f : O(2n + 1) — Zs x SO(2n + 1),z —
(det z, (det x)z). Then det((detx)x) = (detz)?*" ™ detx = 1, so it is well-defined, and
is a homormorphism. It is also onto since any element (¢,y) € Zs x SO(2n + 1) can be
written as (det z, (det x)x) for x = ey. Thus they are isomorphic as groups. Now both
spaces are compact we have f is also homeomorphism.

However O(2) and Z, x SO(2) are not isomorphic, since the former is non-commutative,
e.g. areflection in y-axis and a rotation 7 are not commuting, and the latter is commutative.

5. Let X be a topological space. Prove the following: (a) If C' is a convex subset of R" then
any two maps f,g : X — C are homotopic to each other. (b) If f,g : X — S? are maps to
the unit sphere such that f(z) + g(x) # 0 then they are homotopic to each other.

Solution. (a) We choose h(x,t) = (1 —t)f(z) + tg(x). Then h : X x [ — X is well-
defined since C' is convex, and is a homotopy between f and g.

(b) We can take

(1 =) f(x) + tg(2)]
h(x,t) is well-defined if (1 —t) f(x) +tg(x) # 0. However if (1 —t¢) f(x) 4+ tg(x) = 0 then
(1 —t)f(z) = —tg(x), and further by taking norm, 1 — ¢ = ¢, i.e, t = 3, which in turns
gives 3 f(z) + 39(x) = 0, and f(z) + g(z) = 0 and is excluded by our assumption. Now %
defines a homotopy between f and g.

(x,t) e X x 1

6. Let S! be the unit circle in the plane written in complex coordinates as S* = {e?;0 < § <
27}, Consider the action of Z on X := R x S, n : (z,u) — (2 + n,e™>u). Find the
homotopy group (X /Z) of the orbit space X/Z.

Solution. Consider the map
f:X =X, (z,u) — (z,e2%u)
Then f is an homeomorphim of X with the inverse given by
X = X, (x,0) = (z,e73%)

Denote the action by a. The conjugation n — f~' o a(n) o f defines an action of Z on
X. The corresponding orbit space is homeomorphic to the orbit space X/(Z, ), which is
given by the map [z] — [f~'z], sending the orbits of « to orbits of f~' o« (n) o f. However

ftoa(n)o fis
(5,0) = (3, 657u) > (& +n, e Feifou) = (z 4+ 7, el MEy)

s T

— (x4 n,e @M ENTYY = (24 n,u),

and is acting on x along. Thus the corresponding orbit space X/(Z, f~' o a(n) o f) is
(R/Z) x S = S' x S'. The homotopy group is thus Z2.

7. Formulate and prove the Brower’s Fixed Point Theorem (for a disk in the plane).

See the textbook.



8. Let P" be the projective space of lines [x] = Rz in R""!. We consider the map f : P! —
P2 x = [x1, %] = [T1, %9, 71 + x2]. Prove that f is well-defined and find the homotopy
group of P2\ f(P!).

Solution.  fis linear and thus maps line to line or to the zero vector. However f(z) # 0 if
x # 0. Thus f well-defined on the projective space.

The image f(P') consists of all lines in the plan x3 = z; + x5. Thus its complement
P2\ f(P') consists of all lines [z] = [(z1, T2, z3)] With 3 # 11 + x9. We prove first that
this is a path-connected set. Each point in the projective space P? can be viewed as a pair
of antipodal points on the sphere S?. Thus P? \ f(P!) consists of pairs of antipodal points
+x on the sphere such that z3 # x1 + x2. The plane x3 = x; + x5 cuts the sphere in two
path connected pieces, an upper sphere with 3 > x; 4 29, and lower sphere z3 < z; + 22,.
However each point x3 > x; + x5 has its antipodal points (y;,¥y2,y3) = —z satisfying
ys < Y1 + Y2, and the two points represent the same point on the projective space. Thus
P2\ f(P!) is path-connected, as any two points can be connected by a path in the upper
half-sphere considered as path in the projective space. (This can also be obtained from the
following arguments using the homotopy.)

We claim that the homotopy group P? \ f(IP) is trivial. (Indeed it is just the upper-half
sphere, intuitively.) We consider the map
g: P2\ f(P") = RY, [21, 20, 25] — |25 — 21 — 3o
and
j:RT = P2\ f(PY), s+ 10,0,5]
By the definition we see that g, j is well-defined and continuous. Clearly g o j = Id, the
identity map. On the other hand,
j og: [1'1,1'2,.%3] — [0,0, |33'3 — T — .CEQH
To prove this is homotopic to the identify we take

h(t,x) = [(1 — t)x1, (1 — t)@g, 13 — tag — tay), o € P?\ f(P1),0<t <1

Now to check £ is well-defined we observe that if the vector ((1 —¢)z1, (1 —1t)zo, x5 —tz; —
tzy) = 0, then x5 = x1 + x5 and x is zero or is on the plane so defined, which is in the image
of f. Furthermore h(0,z) = Idand h(1,z) = [0,0, 23 — 21 — 23] = [0,0, |z — 21 — 22|] =
j o g, proving the claim and thus the homotopy group is the same as R™, which is the trivial
group 0.



