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Exam in MMA 100 Topology, 7.5 HEC.

1. Let X be a topological space. Prove or disprove the following statements for subsets of X:

(a) A ∪B = A ∪B. (A stands for the closure of A).

(b) ∂A ∩ ∂B = ∂(A ∩B). (∂A = A ∩ Ac stands for the boundary of A).

Solution. (a) True statement. We haveA ⊂ A∪B,B ⊂ A∪B, and thus Ā ⊂ A ∪B, B̄ ⊂
A ∪B, implying Ā ∪ B̄ ⊂ A ∪B. Conversely if x /∈ Ā ∪ B̄ then x /∈ Ā and x /∈ B̄. There
exist U1 and U2 such that U1 ∩ A = ∅, U2 ∩ B = ∅. Take U = U1 ∩ U2, a neighborhood of
x. Then

U ∩ (A ∪B) = (U ∩ A) ∪ (U ∩B) ⊂ (U1 ∩ A) ∪ (U2 ∩B) = ∅.

Thus x /∈ A ∪B. This finished the proof.

(b) False. Take A = (−1, 0), B = (0, 1).

2. Let R∗ = {x ∈ R;x 6= 0} and R+ = {x ∈ R;x > 0} be the set of non-zero respectively
positive real numbers. Consider the map f : R∗ → R+, f(x) = x2. We define a new
topology N on R∗ be requiring that the open sets are of the form f−1(O), where O ⊂ R+

are open sets in R+ (equpped with the standard Euclidean topology). Prove that (R∗,N ) is
connected and non-Haussdorff.

Solution. Let R∗ = A ∪ B be a disjoint union of two non-empty open sets. We shall
prove this leads to a contradiction. By the definition of open sets in R∗ and that any open
set in R+ is a disjoint union of open intervals (a, b), 0 < a < b, we see that A is a disjoint
union of open intervals of the form (a, b), (−b,−a). In otherwords f is an open map, and
we have R+ = f(A) ∪ f(B) and f(A) and f(B) are open sets. Now if f(a) = f(b) for
a ∈ A, b ∈ B we have that a = ±b but A is open and contains ±a thus b = ±a is in A,
contradicting A ∩ B = ∅. In other words, we have R+ = f(A) ∪ f(B), a union of two
disjoint open sets, contradicting that R+ is connected.

Take the points 1,−1. They are distincts but are always in one neighborhood. Thus it is not
Haussdorff.

3. Let S be the unit circle in the plane R2, and X be the subset of the product S×S consisting
of non-parallell unit vectors (x, y). We equipp S × S with the product topology and X the
subset topology. Answer the following questions with proofs: (a) Is X a compact set? (b)
Is the map f : X → S, f(u, v) = u, a closed map (i.e., mapping closed sets to closed sets)?

Solution. (a) X is not compact. S×S is a compact set and Haussdorff. Thus X ⊂ S×S
is compact iff it is closed. But the complement of X is the set {(x,±x) ∈ S × S, x ∈ S},
and is closed (in fact compact). Thus X is open in S×S and is not closed (as the only open
and closed non-empty set in S × S is the total space since it is connected.) (Alternatively
we may take a sequence of the form (e1, pn) in X with pn approaching 1 and see that X is
not closed.)

(b) Not a closed map. Let e1 be the unit basis vector in S and consider U = {(p, e1) ∈
X; p 6= e1} then U is a closed set since its closure in X is itself. However the projection p
maps U onto the set {p; p 6= e1} in S which is clearly not closed.



4. Prove that the orthogonal group O(2n + 1) and Z2 × SO(2n + 1) are homeomorphic as
topological spaces and isomorphic as groups. Prove that O(2) and Z2 × SO(2) are not
isomorphic.

Solution. We realize Z2 as {±1}. Notive first each element x ∈ O(m) has its determi-
nant being ±1. Now we consider the map f : O(2n + 1) → Z2 × SO(2n + 1), x 7→
(detx, (detx)x). Then det((detx)x) = (detx)2n+1 detx = 1, so it is well-defined, and
is a homormorphism. It is also onto since any element (ε, y) ∈ Z2 × SO(2n + 1) can be
written as (detx, (detx)x) for x = εy. Thus they are isomorphic as groups. Now both
spaces are compact we have f is also homeomorphism.

However O(2) and Z2 × SO(2) are not isomorphic, since the former is non-commutative,
e.g. a reflection in y-axis and a rotation π

2
are not commuting, and the latter is commutative.

5. Let X be a topological space. Prove the following: (a) If C is a convex subset of Rn then
any two maps f, g : X → C are homotopic to each other. (b) If f, g : X → S2 are maps to
the unit sphere such that f(x) + g(x) 6= 0 then they are homotopic to each other.

Solution. (a) We choose h(x, t) = (1 − t)f(x) + tg(x). Then h : X × I → X is well-
defined since C is convex, and is a homotopy between f and g.

(b) We can take

h(x, t) =
(1− t)f(x) + tg(x)

‖(1− t)f(x) + tg(x)‖
, (x, t) ∈ X × I

h(x, t) is well-defined if (1− t)f(x) + tg(x) 6= 0. However if (1− t)f(x) + tg(x) = 0 then
(1 − t)f(x) = −tg(x), and further by taking norm, 1 − t = t, i.e, t = 1

2
, which in turns

gives 1
2
f(x) + 1

2
g(x) = 0, and f(x) + g(x) = 0 and is excluded by our assumption. Now h

defines a homotopy between f and g.

6. Let S1 be the unit circle in the plane written in complex coordinates as S1 = {eiθ; 0 ≤ θ <
2π}. Consider the action of Z on X := R × S1, n : (x, u) 7→ (x + n, ein

π
2 u). Find the

homotopy group π1(X/Z) of the orbit space X/Z.

Solution. Consider the map

f : X → X, (x, u) 7→ (x, ei
π
2
xu)

Then f is an homeomorphim of X with the inverse given by

f−1 : X → X, (x, v) 7→ (x, e−i
π
2
xv)

Denote the action by α. The conjugation n → f−1 ◦ α(n) ◦ f defines an action of Z on
X . The corresponding orbit space is homeomorphic to the orbit space X/(Z, α), which is
given by the map [x]→ [f−1x], sending the orbits of α to orbits of f−1 ◦α(n)◦f . However
f−1 ◦ α(n) ◦ f is

(x, u)→ (x, ei
π
2
xu)→ (x+ n, ein

π
2 ei

π
2
xu) = (x+ n, ei(x+n)

π
2 u)

→ (x+ n, e−i
π
2
(x+n)ei(x+n)

π
2 u) = (x+ n, u),

and is acting on x along. Thus the corresponding orbit space X/(Z, f−1 ◦ α(n) ◦ f) is
(R/Z)× S1 = S1 × S1. The homotopy group is thus Z2.

7. Formulate and prove the Brower’s Fixed Point Theorem (for a disk in the plane).

See the textbook.



8. Let Pn be the projective space of lines [x] = Rx in Rn+1. We consider the map f : P1 →
P2, x = [x1, x2] 7→ [x1, x2, x1 + x2]. Prove that f is well-defined and find the homotopy
group of P2 \ f(P1).

Solution. f is linear and thus maps line to line or to the zero vector. However f(x) 6= 0 if
x 6= 0. Thus f well-defined on the projective space.

The image f(P1) consists of all lines in the plan x3 = x1 + x2. Thus its complement
P2 \ f(P1) consists of all lines [x] = [(x1, x2, x3)] with x3 6= x1 + x2. We prove first that
this is a path-connected set. Each point in the projective space P2 can be viewed as a pair
of antipodal points on the sphere S2. Thus P2 \ f(P1) consists of pairs of antipodal points
±x on the sphere such that x3 6= x1 + x2. The plane x3 = x1 + x2 cuts the sphere in two
path connected pieces, an upper sphere with x3 > x1 + x2, and lower sphere x3 < x1 + x2,.
However each point x3 > x1 + x2 has its antipodal points (y1, y2, y3) = −x satisfying
y3 < y1 + y2, and the two points represent the same point on the projective space. Thus
P2 \ f(P1) is path-connected, as any two points can be connected by a path in the upper
half-sphere considered as path in the projective space. (This can also be obtained from the
following arguments using the homotopy.)

We claim that the homotopy group P2 \ f(P) is trivial. (Indeed it is just the upper-half
sphere, intuitively.) We consider the map

g : P2 \ f(P1)→ R+, [x1, x2, x3] 7→ |x3 − x1 − x2|

and
j : R+ → P2 \ f(P1), s 7→ [0, 0, s]

By the definition we see that g, j is well-defined and continuous. Clearly g ◦ j = Id, the
identity map. On the other hand,

j ◦ g : [x1, x2, x3] 7→ [0, 0, |x3 − x1 − x2|]

To prove this is homotopic to the identify we take

h(t, x) = [(1− t)x1, (1− t)x2, x3 − tx1 − tx2], x ∈ P2 \ f(P1), 0 ≤ t ≤ 1

Now to check h is well-defined we observe that if the vector ((1−t)x1, (1−t)x2, x3−tx1−
tx2) = 0, then x3 = x1+x2 and x is zero or is on the plane so defined, which is in the image
of f . Furthermore h(0, x) = Id and h(1, x) = [0, 0, x3−x1−x2] = [0, 0, |x3−x1−x2|] =
j ◦ g, proving the claim and thus the homotopy group is the same as R+, which is the trivial
group 0.


