Mathematical Sciences (MV), GU Thursday, August 21, 2014, 8:30-12:30. No aids (closed book, closed notes). Phone: 0703-088304 Christoffer Standar Presence of teacher: $\sim 9:30$ and ~ 11.30

Exam in MMA 100 Topology, 7.5 HEC.

- Let X be a topological space. Prove or disprove the following statements for subsets of X:
 (a) A∪B = A∪B. (A stands for the closure of A).
 (b) ∂A ∩ ∂B = ∂(A ∩ B). (∂A = A ∩ A^c stands for the boundary of A).
- 2. Let $\mathbb{R}^* = \{x \in \mathbb{R}; x \neq 0\}$ and $\mathbb{R}^+ = \{x \in \mathbb{R}; x > 0\}$ be the set of non-zero respectively positive real numbers. Consider the map $f : \mathbb{R}^* \to \mathbb{R}^+, f(x) = x^2$. We define a new topology \mathcal{N} on \mathbb{R}^* be requiring that the open sets are of the form $f^{-1}(O)$, where $O \subset \mathbb{R}^+$ are open sets in \mathbb{R}^+ (equpped with the standard Euclidean topology). Prove that $(\mathbb{R}^*, \mathcal{N})$ is connected and non-Haussdorff.
- 3. Let S be the unit circle in the plane ℝ² and X be the subset of the product S×S of consisting of non-parallell unit vectors (x, y). We equipp S × S with the product topology and X the subset topology. Answer the following questions with proofs: (a) Is X a compact set? (b) Is the map f : X → S, f(u, v) = u, a closed map (i.e., mapping closed sets to closed sets)?
- 4. Prove that the orthogonal group O(2n + 1) and $\mathbb{Z}_2 \times SO(2n + 1)$ are homeomorphic as topological spaces and isomorphic as groups. Prove that O(2) and $\mathbb{Z}_2 \times SO(2)$ are not isomorphic.
- 5. Let X be a topological space. Prove the following: (a) If C is a convex subset of \mathbb{R}^n then any two maps $f, g: X \to C$ are homotopic to each other. (b) If $f, g: X \to S^2$ are maps to the unit sphere such that $f(x) + g(x) \neq 0$ then they are homotopic to each other.
- 6. Let S^1 be the unit circle in the plane written in complex coordinates as $S^1 = \{e^{i\theta}; 0 \le \theta < 2\pi\}$. Consider the action of \mathbb{Z} on $X := \mathbb{R} \times S^1$, $n : (x, u) \mapsto (x + n, e^{in\frac{\pi}{2}}u)$. Find the homotopy group $\pi_1(X/\mathbb{Z})$ of the orbit space X/\mathbb{Z} .
- 7. Formulate and prove the Brower's Fixed Point Theorem (for a disk in the plane).
- 8. Let \mathbb{P}^n be the projective space of lines $[x] = \mathbb{R}x$ in \mathbb{R}^{n+1} . We consider the map $f : \mathbb{P}^1 \to \mathbb{P}^2, x = [x_1, x_2] \mapsto [x_1, x_2, x_1 + x_2]$. Prove that f is well-defined and find the homotopy group of $\mathbb{P}^2 \setminus f(\mathbb{P}^1)$.

8 problems, 24 point: 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3. Grade limits: 12p for Godkänd (Pass), 18p for Väl Godkänd (Very Good). GZ