Solution. Exam in MMA 100 Topology, Thursday, June 11, 2015, 8:30-12:30.

(a) False: Example f : ℝ → ℝ, f(x) = ^{1-|x|}/_{|x|+1} f maps the closed set ℝ to the open but not closed set (-1, 1) in ℝ.
(b) False: Let X be the the real line equipped with the topology being defined by the basis

(b) False: Let X be the the real line equipped with the topology being defined by the basis $(a, \infty), a \in \mathbb{R}$. Then the set $[0, \infty)$ is compact but not closed.

2. Answer: X and Y are not homeomorphic, X is Hausdorff where as Y is not.

X and Y are homotopic and have their fundamental group being \mathbb{Z} .

- 3. Proof: We prove that f⁻¹: f(X) → X is a map. Let U ⊂ X be open, then U^c is closed and thus compact since X is compact. Thus f(U^c) is compact and then closed since Y is Hausdorff. The inverse image of U under f⁻¹ is (f⁻¹)⁻¹(U) = f(U), and its complement in f(X) is f(U^c) which is closed, namely f(U) is open.
- 4. Solution: View the torus as the quotient group of ℝ²/ℤ² with the discrete group ℤ² acts on ℝ² by the group operation. Any discrete subgroup of the torus has its preimage being a discrete subgroup of ℝ² and vice versa. A discrete subgroup of ℝ² has its projection in ℝ being discrete and is of the form ℤθ, where θ is a rational number. Thus all discrete subgroups of the torus are of the form

$$H_{(\theta_1,\theta_2)} = \{ (e^{i2\pi\theta_1 n}, e^{i2\pi\theta_2 m}), n, m \in \mathbb{Z} \}$$

where θ_1, θ_2 are rational numbers.

5. Solution: The action of \mathbb{Z}^2 on X can be written as the product of the action of \mathbb{Z} on $\mathbb{C} \setminus \{0\}$ by

$$m: \mathbb{C} \setminus \{0\} \to \mathbb{C} \setminus \{0\}, \quad w \mapsto e^m w$$

with that of \mathbb{Z} on $\mathbb{C} \times S^1$,

$$n: \mathbb{C} \times S^1 \to \mathbb{C} \times S^1, \quad (z,s) \mapsto (e^{in\pi}z, e^{i\frac{2\pi}{3}n}s) = ((-1)^n z, \omega^n s), \omega = e^{i\frac{2\pi}{3}}$$

The quotien space of the first one is a torus (thought as a ring with inner circle of radius 1 and outer circle of radius e being identified) and has its fundamental group \mathbb{Z}^2 . So determine the second quotient space. The space \mathbb{C} is contractive so we have a homotopy $F_t : \mathbb{C} \times S^1 \to \mathbb{C} \times S^1$,

$$F_t(z,s) = (tz,s)$$

from the trivial map $(z, s) \mapsto (0, s)$ for t = 0 to the identity map $(z, s) \mapsto (z, s)$ for t = 1. We claim that F_t induces a homotopy on the quotient space $\mathbb{C} \times S^1/\mathbb{Z} \to \mathbb{C} \times S^1/\mathbb{Z}$ from the trivial map $[(z, s)] \to [(0, s)]$ to the identity map $[(z, s)] \to [(0, s)]$. Indeed

$$F_t(n(z,s)) = F_t((-1)^n z, \omega^n s) = (t(-1)^n z, \omega^n s) = nF_t((z,s));$$

namely the action of n commutes with F_t . Thus

$$[F_t]: \mathbb{C} \times S^1/\mathbb{Z} \to \mathbb{C} \times S^1/\mathbb{Z}, \quad [(z,s)] \mapsto [F_t(z,s)]$$

is a well-defined map (and is continuous since \mathbb{Z} acts discretely). In other words,

the subset $\{0\} \times S^1/\mathbb{Z}$ is a homotopy retract in $\mathbb{C} \times S^1/\mathbb{Z}$.

Thus the fundamental group of $\mathbb{C} \times S^1/\mathbb{Z}$ is the same as $\{0\} \times S^1/\mathbb{Z}$, which is \mathbb{Z} since the latter is again a circle since it is covered by the circle three times.

6. Solution: Let

$$Y = \{ [x_1, x_2] \in \mathbb{P}^{2n-1}; |x_1| = |x_2| = 1 \} \subset X$$

Then

$$Y = S^{n-1} \times S^{n-1} / \mathbb{Z}_2$$

where \mathbb{Z}_2 acts on $S^{n-1} \times S^{n-1}$ by $x \mapsto \pm x$. Consider the map

$$f: X \to X, \quad [x_1, x_2] \mapsto [\frac{x_1}{|x_1|}, \frac{x_2}{|x_2|}]$$

By definition of X we see that f is well-defined and

$$f: X \to Y = S^{n-1} \times S^{n-1} / \mathbb{Z}_2 \subset X$$

where Y is the quotient of the product of spheres with \mathbb{Z}_2 acting by sign change $(y_1, y_2) \rightarrow \pm (y_1, y_2)$. We claim that Y is a homotopy retract of X. Indeed let

$$F_t: f: X \to X, \quad [x_1, x_2] \mapsto [tx_1 + (1-t)\frac{x_1}{|x_1|}, tx_2 + (1-t)\frac{x_2}{|x_2|}]$$

 F_t is well-defined and

$$F_1 = Id, \quad F_0 = f,$$

proving our claim. Thus the homotopy group of X is the same as $Y = S^{n-1} \times S^{n-1}/\mathbb{Z}_2$. If n > 2 we have $\pi_1(Y) = \mathbb{Z}_2$ since S^{n-1} is simply connected.

If n = 2 we have $S^1 \times S^1$ is a group and $Y = S^1 \times S^1/\mathbb{Z}_2$ is quotient space by the subgroup

If n = 2 we have $S \times S^{-1}$ is a group and $T = S \times S^{-1} \mathbb{Z}_2$ is quotient space by the subgroup $\{(1, 1), (-1, -1)\}$, and is a group since $S^1 \times S^1$ is abelian. Now the fundamental group of any topological group is abelian, thus $\pi_1(Y)$ is abelian. Now $S^1 \times S^1$ is a covering of Y with covering index 2. Thus $\pi_1(S^1 \times S^1) = \mathbb{Z}^2$ is a subgroup of the abelian group $\pi_1(Y)$ of index 2, $\pi_1(Y) = \pi_1(S^1 \times S^1) \cup \alpha \pi_1(S^1 \times S^1)$; the element α is representated by the path from (1, 1) to (-1, -1) in $S^1 \times S^1$, whose square α^2 is representated by a loop in $S^1 \times S^1$. Thus we have $\pi_1(Y) = \mathbb{Z}^2$ (and the subgroup $\pi_1(S^1 \times S^1)$ is identified with $\mathbb{Z} \oplus 2\mathbb{Z}$ in $\mathbb{Z} \oplus \mathbb{Z}$.) (Alternatively the action of $\{\pm\}$ on $S^1 \times S^1$ can be realized via the homeomorphism $(x, y) \to (x, xy)$ as an action on the first factor S^1 and trivial on the second, thus $Y \sim_{homeo} S^1/\{\pm\} \times S^1 = \sim_{homeo} S^1 \times S^1$.)

See the textbook for solutions of Prob. 7-8.