Mathematical Sciences (MV), GU Thursday, June 11, 2015, 8:30-12:30. No aids (closed book, closed notes). Phone: 0703-088304 Christoffere Standar Presence of teacher: \sim 9:30 and \sim 11:30

Exam in MMA 100 Topology, 7.5 HEC.

- 1. Prove or disprove the following claims for general topological spaces: (a) A continuous map $f: X \to Y$ maps closed sets to closed sets. (b) A compact subset of a topological space is always closed.
- 2. Consider two families of circles $\{C_n\}$ and $\{D_n\}$ in the plane \mathbb{E}^2 with center 0: C_n has radius $n, n = 1, 2, \cdots$, while as D_n has radius $\frac{1}{n}, n = 1, 2, \cdots$. Let X (respectively Y) be the plane with all $\{C_n\}$ being identified with C_1 (respectively all D_n being identified with D_1). Are X and Y homeomorphic? Are X and Y homotopic?
- 3. Suppose X is a compact space and Y is a Hausdorff space. Prove that if $f : X \to Y$ is a one-to-one map then $f : X \to f(X)$ is a homeomorphism, where f(X) is equipped with the induced topology.
- 4. Let $S^1 = \{e^{i\theta}; 0 \le \theta \le 2\pi\}$ be the circle group in \mathbb{C} (with the usual product of complex numbers). The torus $S^1 \times S^1$ is a topological group equipped with the natural product, $(z, w)(z_1, w_1) = (zz_1, ww_1)$. Find all discrete subgroup of the torus. (Recall that a discrete subgroup is a subgroup with the induced topology being discrete.)
- 5. Let $X = \mathbb{C} \times (\mathbb{C} \setminus \{0\}) \times S^1$, where \mathbb{C} is the complex plane and S^1 the unit circle. Let \mathbb{Z}^2 act on X by the following: $(n,m) \in \mathbb{Z} : X \to X$, $(z,w,e^{it}) \mapsto (e^{in\pi}z,e^mw,e^{i\frac{2\pi}{3}n}e^{it})$. Find the fundamental group of the orbit space X/\mathbb{Z}^2 .
- 6. Let \mathbb{P}^{2n-1} , n > 1, be the projective space of lines $[x] = \mathbb{R}x$ in $\mathbb{R}^{2n} = \mathbb{R}^n \times \mathbb{R}^n$, $x \neq 0$. We consider the subset $X = \{[x_1, x_2]; x_1, x_2 \in \mathbb{R}^n, x_1 \neq 0, x_2 \neq 0\}$. Prove that X is path-connected and find the fundamental group of X. (The answer depends on n.)
- 7. Formulate the definition that $f: \tilde{X} \to X$ is a covering map. Prove that a covering map $f: \tilde{X} \to X$ induces an injective homomorphism of the fundamental groups $f_*: \pi_1(\tilde{X}, p) \to \pi_1(X, q)$, where q = f(p). (Hint: Use the lifting lemma.)
- 8. Formulate and prove the Brouwer fixed point theorem.

8 problems, 24 point: 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3. Grade limits: 12p for Godkänd (Pass), 18p for Väl Godkänd (Very Good). GZ