
Solution, Exam 2016-03-17, MMA 100 Topology

1. Prove or disprove the following claims for general topological spaces: (a) A continuous
injective mapping f : X → Y maps open sets U ⊂ X to open sets f(U) ⊂ Y . (b) Any
connected component of a topological space X is open.

(a). False. Counter example: Let f : R → R, f(x) = sinx, U = (0, 4π) is open and its
image f(U) = [−1, 1] is not open.

(b). False. Consider the set Q of rational numbers equipped with the Euclidean topology.
Its connected components are the singletons {r}, none of them is open.

2. Suppose C ⊂ X is a compact subset of a Haussdorff space X . Prove that C is closed.

– See the text book for the proof.

3. Let A and B be the following subsets of the Euclidean plan E2: A = {(x, n) ∈ R2;x ∈
R, n = 1, 2, · · · }, and B = {(x, nx) ∈ R2;x ∈ R, n = 1, 2, · · · }. Let X (respectively Y )
be the identification space of the plane R2 with the subset A being identified with the origin
o = (0, 0) (respectively B identified with o) and the rest of the points are themselvs. Prove
that X and Y are not homeomorphic. Does there exist an injective continous map from Y
to X?

Proof: X is Haussdorff where as Y is not, therefore they are not homeomorphic. Generally,
if some equivalence class [z] in a topological space Z is not closed and has a limit point,
then Z/∼ is not Haussdorff. Let’s give a concrete proof. Take the class [a] = [(0, 1)] ∈ Y
of a = (0, 1). Then [a] = a is identified with itself. Any neighborhood V of [a] ∈ Y is
represented by a neighborhood U in E2 of (0, 1) ∈ E2, V = [U ], which then contains a point
( 1
n
, 1) for n sufficiently large, namely V contains then the point [( 1

n
, 1)] = [o], since ( 1

n
, 1)

is identified with o. This proves that Y is not Haussdorff. To prove that X is Haussdorff we
let [p] 6= [q], [p], [q] ∈ X . Suppose none of them is [o], i.e. they are not on the lines y = n.
Then we can choose disjoint neighborhoods Up and Uq of p and q respectively in E2 such
that they have no intersection with the lines y = n. Then [Up] = Up and [Uq] = Uq are in
disjoint neighborhood of [p] and [q] in X . Suppose [p] = [o] = A and [q] 6= [o], i.e. q /∈ A.
Then A is a closed set in the Euclidean space E2, we can choose a neighborhood Uq of q in
E2 and V of A such that Uq ∩ V = ∅. Thus [Uq] = Uq and [V ] = V are neighborhoods of
[q] and [o], and [Uq] ∩ [V ] = ∅.

4. Let X = {x = (x1, x2, x3, x4) ∈ E4;x 6= 0, x1x4 − x2x3 = 0} be equipped with the
subspace topology of E4. Prove that X is path-connected.

Proof: The set X can be interpreted as the set of pairs of parallell vectors u = (x1, x2)
and u = (x3, x4) which are not vanishing simultaneously.) We fix a reference point e1 =
(1, 0, 0, 0). Let x = (x1, x2, x3, x4) = (u, v) be a general point.



Case 1: u = (x1, x2) 6= 0. We can first join x to a point y = (y1, y2, y3, y4) where (y1, y2)
is a point on the unit circle. Indeed t 7→ t(x1, x2, x3, x4) for t in the segment between 1
and 1

‖u‖ is an arc joining x to y with (y1, y2) = u
‖u‖ is a point on the unit circle S1. Thus

(y3, y4) = c(y1, y2) for some c. Now the circle S1 is path-connected so there is a path
u(t), t ∈ [0, 1] joining (1, 0) to (y1, y2), u(0) = (1, 0), u(1) = (y1, y2), consequently

t 7→ (u(t), ctu(t)) ∈ X

is a path joining e1 = (1, 0, 0, 0) to (u(1), cu(1)) = (y1, y2, y3, y4).

Case 2: u = (x1, x2) = 0. Then v = (x3, x4) 6= 0. We can make a path switching u and v.
Indeed

t 7→ (tx3, tx4, (1− t)x3, (1− t)x4), t ∈ [0, 1]

is a curve in X joining (0, 0, x3, x4) to the point (x3, x4, 0, 0). This then reduces the Case 1
above.

5. Prove that the orthogonal group O(3) is isomorphic to SO(3) × Z2 as topological groups.
Is O(2) isomorphic to SO(2)× Z2 as groups? (Recall Z2 = {±1}.)
Proof. Observe that the diagonal matrix −I is in the center of O(3). So the map

h : O(3)→ SO(3)× Z2; g 7→ ((det g)g, det g)

with inverse map

h−1 : SO(3)× {±1} → O(3); (g,±1) 7→ (±1)g

is a group isomorphism and a topological homeomorphism since det g is continous.

However O(2) is not isomorphic to SO(2) × Z2 since the center O(2) is the group {±1}
and SO(2)× Z2 has center Z2 × Z2.

6. Let Z3 = {e
k
3
2πi, k = 0, 1, 2} be the cyclic group of order 3. Consider the action ρ of Z3 on

the torus T = S1 × S1 = {(z1, z2) ∈ C2; |z1| = |z2| = 1} defined by ρ(e
k
3
2πi) : (z1, z2) 7→

(e
k
3
2πiz1, e

− k
3
2πiz2). Let X = T/Z3 be the orbit space. Prove that X is homeomorphic to

a torus and describe the induced group homomorphism p∗π1(T ) = Z2 → π1(X) = Z2 of
the natural projection p : T → X . (Hint: Use the homeomorphism (z1, z2) 7→ (z1, z1z2) to
“trivialize” the action)

Solution: Consider the map h : T 7→ T, (z1, z2) 7→ (z1, z1z2) and the group action λ of
Z3 on T , λ(e

k
3
2πi) : (z1, z2) 7→ (e

k
3
2πiz1, z2). Then h is a homeomorphism and we have

h−1 ◦ λ(g) ◦ h = ρ(g) for g ∈ Z3. Thus the orbit space of the action of ρ is homeomorphic
to the action of λ, which is S1/Z3 × S1 and is further homeomorphic to S1 × S1 = T . The
induced homomorphism p∗ is Z2 7→ Z2 : (n,m) 7→ (3n,m).



7. Formulate the definition that X̃ is a covering space of X . Find all the path-connected
covering spaces X̃ of the space Pn−1 × S1, n ≥ 3.

Solution: The fundamental group π1(Pn−1 × S1) is Z2 × Z. Any subgroup of Z2 × Z is
of the form Z2 × mZ, or {1} × mZ. In the first case the covering space is Pn−1 × S1 or
Pn−1 × R with the covering map (p, s) 7→ (p, sm), or (p, x) 7→ (p, e2πix. In the second
case the covering space is Sn−1 × S1 or S×R with the covering map (p, s) 7→ ([p], sm), or
(p, x) 7→ ([p], e2πix, where p→ [p] is the defining covering of Pn−1 by Sn−1.

8. Formulate the definition that two spaces X and Y have the same homotopy type. Prove that
two spaces with the same homotopy type have the isomorphic homotopy groups.

– See the text book for the proof.

8 problems, 24 point: 3 + 3 + 3 +3 +3 +3 +3+3. Grade limits: 12p for Godkänd (Pass), 18p for
Väl Godkänd (Very Good). GZ


