Mathematical Sciences (MV), GU Thursday, March 16, 2017, 14:00-18:00. No aids (closed book, closed notes). Phone: 7725385/0768845063 Presence of teacher: ~15:15 and ~16:30

Exam in MMA 100 Topology, 7.5 HEC.

- Prove or disprove the following claims for general topological spaces: (a) The set of inner points A^o is the same as that of its closure, A⁰ = (Ā)^o. (b) The inverse image f⁻¹(C) of a closed subset C ⊂ Y of a map f : X → Y is closed in X.
- 2. Prove that a compact subset C of a Hausdorff space X is closed.
- 3. Let (X, d) be a connected metric space consisting of at least two points. Prove that there exists a continuous function $f : X \to [0, 1]$ which is *onto*.
- Recall that a wallpaper group G is a discrete subgroup of motion group ℝ² ⋊ O(2) such that the orbit space ℝ²/G is a compact Hausdorff space. (a) Prove that if G contains a rotation R_θ of angle θ then θ = 2πr for some rational number r. (b) Prove that if G is a wallpaper group such that ℝ² → ℝ²/G is a covering then G contains no reflections or rotations, i.e. G ∩ O(2) = {Id}. (Hint: Consider a neighborhood of the origin in ℝ².)
- 5. Let X be the set of pairs of distinct complex numbers, $X = \{(c_1, c_2) \in \mathbb{C}^2; c_1 \neq c_2\}$. Prove that X is path connected and find its fundamental group. (Hint: Consider the subset $X_0 = \{(c, 0) \in \mathbb{C}^2; c \neq 0\}$ of X.
- 6. Let $f: X \to S^n$ be a map which is not onto. Prove that f is homotopy to a constant map $e_p: X \to S^n, x \mapsto p$ for some $p \in S^n$.
- 7. Let $\mathbb{P}^n = \mathbb{R}^{n+1}/\sim$ be the projective space of lines $[u] = \mathbb{R}u$ in \mathbb{R}^{n+1} , n > 1; observe that \mathbb{P}^1 is homeomorphic to the unit circle. Consider the map $f : \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^3$, $([u_1, u_2], [v_1, v_2]) \mapsto [u_1v_1, u_1v_2, u_2v_1, u_2v_2]$. Prove that f is well-defined injective map. Describe the induced group homomorphism $f_* : \pi_1(\mathbb{P}^1 \times \mathbb{P}^1) = \mathbb{Z} \times \mathbb{Z} \to \pi_1(\mathbb{P}^3) = \mathbb{Z}_2$.
- 8. Formulate the definition that $\pi : X \to Y$ is a covering map. Prove that a covering map π is an open map, i.e., π maps open sets to open sets. Is it always a closed map?

8 problems, 24 points = 8×3 . Grade limits: 12p for Godkänd (Pass), 18p for Väl Godkänd (Very Good). GZ