
Solution. Exam Thursday, March 15, 2018, MMA 100 Topology, 7.5 HEC.
1. Prove or disprove the following claims: (a) (A)0 = Ao for any subset A ⊂ X of a topolog-

ical space X , where A stands for the closure of A and Ao stands for the set of inner points
of A. (b) f(A) = f(A) for any continuous function f : R → R and subset A ⊂ R. (c) A
covering map f : X → Y is an open map, i.e., f maps open sets to open sets.

Solution. (a) False. Example: A = Q ⊂ R, Ā = R, (Ā)o = R, A0 = ∅.
(b) False. Ex. f(x) = arctan x, Take A = R, A = Ā, f(Ā) = f(R) = (−π

2
, π
2
), and

f(A) = [−π
2
, π
2
], which is not f(Ā). (Or f(x) = 1

1+|x| , A = R, f(R) = (0, 1])

(c) True. Take U an open set of X . Each x ∈ U has a neighborhood Ux ⊂ U for which
f : Ux → f(Ux) is a homeomorphism, in particular f(Ux) is open. Thus U = ∪x∈UUx and
f(U) = f(∪xUx) = ∪xf(Ux) is also open.

2. Let f : X → Y be an injective onto map where X is compact and Y is Hausdorff. Prove
that f is a homeomorphism. Provide a counter example to the claim whenX is not compact.

Solution. See the textbook for the proof. Counter ex: f : (0, 2π]→ S1, f(x) = eix.

3. Suppose (X, d) is a connected metric space and X contains at least two points. Prove that
there exists an onto continous function f : X 7→ [0, 1]2 to the unit square [0, 1]2.

Proof. Let p 6= q be two different points of X . Let f(x) = d(x,p)
d(x,p)+d(x,q)

. Then f is well-
defined, continous, 0 ≤ f(x) ≤ 1, f(p) = 0, f(q) = 1. X is connected thus f(X) is
connected and consequently f is onto, f(X) = [0, 1]. Now let g : [0, 1] → [0, 1]2 be a
Peano curve, i.e, onto map. Then g ◦ f is onto [0, 1]2.

4. Recall that if a topological group G acts on a space X and H ⊂ G is a subgroup then there
is a natural map X/H → X/G,Hx 7→ Gx mapping H-orbits Hx to G-orbits Gx. Now the
Klein’s bottle K is an orbit space K = R2/G by discrete group G of Euclidean motions.
Describe one covering K1 = R2/H1 → K = R2/G which is normal (i.e., H1 is a normal
subgroup) and one K2 = R2/H2 → K = R2/G which is not normal.

Solution. The Klein’s bottle can be realized as a quotient space R2/G of the plane R2 by
the group G of the Euclidean motions generated by the translation T and the “reflected
translation” S:

T : (x, y) 7→ (x+ 1, y), S : (x, y) 7→ (−x, y + 1).

They satisfy the relation S−1TS = T−1, or equivalently TS−1TS = 1. Let H1 = 〈T 〉
and H2 = 〈S〉 be the subgroup generated by T and respectively by S. It follows from
S−1TS = T−1 and T−1ST = ST 2 (please check!) that H1 is normal subgroup whereas H2

is not. Consequently we have a normal covering R2/H1 → R2/G and an non-normal one
R2/H2 → R2/G.



5. DenoteM = Map(X, Y ) the set of all mappings from X to Y . We say that a subsetM is
path-connected if for any two maps f0, f1 ∈ M, there is a homotopy F : X × [0, 1] → Y
of f0 and f1, i.e., F (·, 0) = f0(·), F (·, 1) = f1(·). Determine if the following two sets
are path-connected and provide arguments for your claim. (a) M = Map(P2,P2). (b)
M = Map(R2 \ {0}, S1). (S1 is the unit circle.) (Hint: Use fundamental groups.)

Proof. Both spaces are not path-connected. Two maps f, g ∈ M are connected by a path
is equivalent that they are homotopic. Thus they induces the same group homomorphisms
f∗ = g∗ : π1(X) → π1(Y ). (a) The fundamental group π1(P2) = Z2. We take f = Id the
identity map and g = ep : x→ p the trivial map (for any fixed p). The corresponding group
homomorphisms are f∗ = Id and g∗ = e : {±} → 1, and are not equal. (b) We may take
f(x) = x/|x|, and g(x) = ep and get f∗, g∗ : Z = π1(R2 \ {0}) → Z = π1(S

1), f∗ = Id
and the trivial map g∗ = e.

6. Let SLn(R) be the group of real n × n-matrices of determinant 1, SLn(R) = {T ∈
Mn,n; detT = 1}. Prove that the subgroup SO(n) = {T ∈ Mn,n;T tT = I, detT = 1}
is a homotopy retract of SLn(R), i.e., there exists f such that the maps SO(n) ↪−−−−−→

inclusion

SLn(R) ↪−→
f
SO(n) define spaces of the same homotopy type.

Proof. Each matrix T ∈ SLn(R) represents an oriented basis in Rn and vice versa. The
Gram-Schmidt orthogonalization states that each T can be written uniquely as T = SU,
where S is an orthogonal matrix and U is an upper-triangular matrix with positive diagonal
elements (the normalization constants). Furthermore detT = 1 implies then detS > 0
and consequently detS = 1, S ∈ SO(n). Let f : SLn → SO(n), f(T ) = S, then f is
continuous since Gram-Schmidt process is done by linear combintation of matrix elements
of T and dividing the norms, all being continous functions in T . The following defines then
the homotopy retract of SO(n) in SLn (we write the formula for 3×3-matrices, the general
case is similar):

F (T, t) = SU(t), T = SU, U =

ea1 ∗ ∗
0 ea2 ∗
0 0 ea3

 , U(t) =

ea1t t∗ t∗
0 ea2t t∗
0 0 ea3t

 .

(Here ∗ represents the matrix element in that position.) Then f ◦ ι = Id and ι ◦ f ∼ Id via
the homotopy F .

7. Consider the set X = {([u], [v]) ∈ P2 × P2; 0 6= u ∈ R3, 0 6= v ∈ R3,u 6‖ v} and the cross
product (u,v) 7→ u × v in R3. Prove that the cross product induces a well-defined map
f : ([u], [v]) 7→ [u × v] from X to P2. Find the fundamental group of X and describe the
group homomorphism f∗ : π1(X)→ π1(P2) = Z2.

Solution: (This problem is a bit more difficult than normal). First we represent all elements
in P2 by unit vectors u, namely P2 = S2/Z2 with Z2 acting by±1, and consider the space Y



of non-parallell unit vectors (u,v). By Gram-Schmidt orthogonalizaion procedure each pair
(u,v) corresponds to a pair of orthogonal vectors (u,v′) with v′ = v+cu

‖v+cu‖ , and c = − (v,u)
(u,u)

.
By changing c to tc, 0 ≤ t ≤ 1 we see that our set Y is homotopic to the set of (u,v)
orthogonal unit vectors and X is homotopic to the quotient space Y/Z2

2,

X ∼homotopy Y/Z2
2

Now each pair (u,v) corresponds to an orientated ON-frame (u,v,u×v) of R3, vice versa,
each orientated ON-frame is of this form. In other words, the set Y is the orthogonal group
SO(3). Now P2 × P2 = S2/Z2 × S2/Z2 = S2 × S2/Z2

2. Thus

X ∼homotopy Y/Z2 × Z2 ∼homeomorphic SO(3)/Z2
2

with the action of Z2
2 on SO(3) by (u,v,u × v) 7→ (±u,±v,±u × v), changing the sign

of exactly two vectors (to keep the orientation). Now the fundamental group of SO(3) is
Z2 (the same as P3) and its universal covering group is the group S3 of unit quaternionic
numbers H, the double covering map is u 7→ (u∗ : R3 = =H → =H, x→ uxu−1), each u
corresponding to a SO(3) matrix u∗ = (uiu−1, uju−1, uku−1) with (ijk) being the standard
frame in =H . The above action of Z2 lifts to S3 producing the group K generated by by
multiplication by the quaternionic unit on u, u 7→ u(±i), u(±j), u(±k) and SO(3)/Z2

2

being the orbit space,
X ∼homotopy S3/K.

Thus the fundamental group ofX and SO(3)/Z2
2 is {±1,±i,±j,±k, }, the Cayley/Hamiltonian

group with 8 quaternionic units.

8. Formulate and prove the Brouwer’s fixed point theorem for the closed unit square [0, 1]2 in
R2.

See the textbook. The same proof of the closed disc works also for the square.


