Solution. Exam Thursday, March 15, 2018, MMA 100 Topology, 7.5 HEC.

- Prove or disprove the following claims: (a) (A)⁰ = A^o for any subset A ⊂ X of a topological space X, where A stands for the closure of A and A^o stands for the set of inner points of A. (b) f(A) = f(A) for any continuous function f : ℝ → ℝ and subset A ⊂ ℝ. (c) A covering map f : X → Y is an open map, i.e., f maps open sets to open sets.
 Solution. (a) False. Example: A = Q ⊂ ℝ, A = ℝ, (A)^o = ℝ, A⁰ = Ø.
 (b) False. Ex. f(x) = arctan x, Take A = ℝ, A = A, f(A) = f(ℝ) = (-π/2, π/2), and f(A) = [-π/2, π/2], which is not f(A). (Or f(x) = 1/(1+|x|), A = ℝ, f(ℝ) = (0, 1])
 (c) True. Take U an open set of X. Each x ∈ U has a neighborhood U_x ⊂ U for which f : U_x → f(U_x) is a homeomorphism, in particular f(U_x) is open. Thus U = ∪_{x∈U}U_x and f(U) = f(∪_xU_x) = ∪_xf(U_x) is also open.
- Let f : X → Y be an injective onto map where X is compact and Y is Hausdorff. Prove that f is a homeomorphism. Provide a counter example to the claim when X is not compact. Solution. See the textbook for the proof. Counter ex: f : (0, 2π] → S¹, f(x) = e^{ix}.
- 3. Suppose (X, d) is a connected metric space and X contains at least two points. Prove that there exists an *onto* continous function $f : X \mapsto [0, 1]^2$ to the unit square $[0, 1]^2$.

Proof. Let $p \neq q$ be two different points of X. Let $f(x) = \frac{d(x,p)}{d(x,p)+d(x,q)}$. Then f is welldefined, continuous, $0 \leq f(x) \leq 1, f(p) = 0, f(q) = 1$. X is connected thus f(X) is connected and consequently f is onto, f(X) = [0,1]. Now let $g : [0,1] \rightarrow [0,1]^2$ be a Peano curve, i.e, onto map. Then $g \circ f$ is onto $[0,1]^2$.

4. Recall that if a topological group G acts on a space X and H ⊂ G is a subgroup then there is a natural map X/H → X/G, Hx → Gx mapping H-orbits Hx to G-orbits Gx. Now the Klein's bottle K is an orbit space K = ℝ²/G by discrete group G of Euclidean motions. Describe one covering K₁ = ℝ²/H₁ → K = ℝ²/G which is normal (i.e., H₁ is a normal subgroup) and one K₂ = ℝ²/H₂ → K = ℝ²/G which is not normal.

Solution. The Klein's bottle can be realized as a quotient space \mathbb{R}^2/G of the plane \mathbb{R}^2 by the group G of the Euclidean motions generated by the translation T and the "reflected translation" S:

$$T: (x,y) \mapsto (x+1,y), S: (x,y) \mapsto (-x,y+1).$$

They satisfy the relation $S^{-1}TS = T^{-1}$, or equivalently $TS^{-1}TS = 1$. Let $H_1 = \langle T \rangle$ and $H_2 = \langle S \rangle$ be the subgroup generated by T and respectively by S. It follows from $S^{-1}TS = T^{-1}$ and $T^{-1}ST = ST^2$ (please check!) that H_1 is normal subgroup whereas H_2 is not. Consequently we have a normal covering $\mathbb{R}^2/H_1 \to \mathbb{R}^2/G$ and an non-normal one $\mathbb{R}^2/H_2 \to \mathbb{R}^2/G$. 5. Denote M = Map(X, Y) the set of all mappings from X to Y. We say that a subset M is path-connected if for any two maps f₀, f₁ ∈ M, there is a homotopy F : X × [0, 1] → Y of f₀ and f₁, i.e., F(·,0) = f₀(·), F(·,1) = f₁(·). Determine if the following two sets are path-connected and provide arguments for your claim. (a) M = Map(P², P²). (b) M = Map(R² \ {0}, S¹). (S¹ is the unit circle.) (Hint: Use fundamental groups.)

Proof. Both spaces are not path-connected. Two maps $f, g \in \mathcal{M}$ are connected by a path is equivalent that they are homotopic. Thus they induces the same group homomorphisms $f_* = g_* : \pi_1(X) \to \pi_1(Y)$. (a) The fundamental group $\pi_1(\mathbb{P}^2) = \mathbb{Z}_2$. We take f = Id the identity map and $g = e_p : x \to p$ the trivial map (for any fixed p). The corresponding group homomorphisms are $f_* = Id$ and $g_* = e : \{\pm\} \to 1$, and are not equal. (b) We may take f(x) = x/|x|, and $g(x) = e_p$ and get $f_*, g_* : \mathbb{Z} = \pi_1(\mathbb{R}^2 \setminus \{0\}) \to \mathbb{Z} = \pi_1(S^1), f_* = Id$ and the trivial map $g_* = e$.

6. Let SL_n(ℝ) be the group of real n × n-matrices of determinant 1, SL_n(ℝ) = {T ∈ M_{n,n}; det T = 1}. Prove that the subgroup SO(n) = {T ∈ M_{n,n}; T^tT = I, det T = 1} is a homotopy retract of SL_n(ℝ), i.e., there exists f such that the maps SO(n) ← SL_n(ℝ) ← SO(n) define spaces of the same homotopy type.

Proof. Each matrix $T \in SL_n(\mathbb{R})$ represents an oriented basis in \mathbb{R}^n and vice versa. The Gram-Schmidt orthogonalization states that each T can be written uniquely as T = SU, where S is an orthogonal matrix and U is an upper-triangular matrix with positive diagonal elements (the normalization constants). Furthermore det T = 1 implies then det S > 0 and consequently det $S = 1, S \in SO(n)$. Let $f : SL_n \to SO(n), f(T) = S$, then f is continuous since Gram-Schmidt process is done by linear combination of matrix elements of T and dividing the norms, all being continuous functions in T. The following defines then the homotopy retract of SO(n) in SL_n (we write the formula for 3×3 -matrices, the general case is similar):

$$F(T,t) = SU(t), T = SU, U = \begin{pmatrix} e^{a_1} & * & * \\ 0 & e^{a_2} & * \\ 0 & 0 & e^{a_3} \end{pmatrix}, U(t) = \begin{pmatrix} e^{a_1t} & t* & t* \\ 0 & e^{a_2t} & t* \\ 0 & 0 & e^{a_3t} \end{pmatrix}.$$

(Here * represents the matrix element in that position.) Then $f \circ \iota = Id$ and $\iota \circ f \sim Id$ via the homotopy F.

7. Consider the set X = {([**u**], [**v**]) ∈ P² × P²; 0 ≠ **u** ∈ R³, 0 ≠ **v** ∈ R³, **u** ∦ **v**} and the cross product (**u**, **v**) → **u** × **v** in R³. Prove that the cross product induces a well-defined map f : ([**u**], [**v**]) → [**u** × **v**] from X to P². Find the fundamental group of X and describe the group homomorphism f_{*} : π₁(X) → π₁(P²) = Z₂.

Solution: (This problem is a bit more difficult than normal). First we represent all elements in \mathbb{P}^2 by unit vectors u, namely $\mathbb{P}^2 = S^2/\mathbb{Z}_2$ with \mathbb{Z}_2 acting by ± 1 , and consider the space Y

of non-parallell unit vectors (\mathbf{u}, \mathbf{v}) . By Gram-Schmidt orthogonalization procedure each pair (\mathbf{u}, \mathbf{v}) corresponds to a pair of orthogonal vectors $(\mathbf{u}, \mathbf{v}')$ with $\mathbf{v}' = \frac{\mathbf{v}+c\mathbf{u}}{\|\mathbf{v}+c\mathbf{u}\|}$, and $c = -\frac{(\mathbf{v},\mathbf{u})}{(\mathbf{u},\mathbf{u})}$. By changing c to tc, $0 \le t \le 1$ we see that our set Y is homotopic to the set of (\mathbf{u}, \mathbf{v}) orthogonal unit vectors and X is homotopic to the quotient space Y/\mathbb{Z}_2^2 ,

$$X \sim_{homotopy} Y/\mathbb{Z}_2^2$$

Now each pair (\mathbf{u}, \mathbf{v}) corresponds to an orientated ON-frame $(\mathbf{u}, \mathbf{v}, \mathbf{u} \times \mathbf{v})$ of \mathbb{R}^3 , vice versa, each orientated ON-frame is of this form. In other words, the set Y is the orthogonal group SO(3). Now $\mathbb{P}^2 \times \mathbb{P}^2 = S^2/\mathbb{Z}_2 \times S^2/\mathbb{Z}_2 = S^2 \times S^2/\mathbb{Z}_2^2$. Thus

$$X \sim_{homotopy} Y/\mathbb{Z}_2 \times \mathbb{Z}_2 \sim_{homeomorphic} SO(3)/\mathbb{Z}_2^2$$

with the action of \mathbb{Z}_2^2 on SO(3) by $(\mathbf{u}, \mathbf{v}, \mathbf{u} \times \mathbf{v}) \mapsto (\pm \mathbf{u}, \pm \mathbf{v}, \pm \mathbf{u} \times \mathbf{v})$, changing the sign of exactly two vectors (to keep the orientation). Now the fundamental group of SO(3) is \mathbb{Z}_2 (the same as \mathbb{P}^3) and its universal covering group is the group S^3 of unit quaternionic numbers \mathbb{H} , the double covering map is $u \mapsto (u_* : \mathbb{R}^3 = \Im H \to \Im H, x \to uxu^{-1})$, each ucorresponding to a SO(3) matrix $u_* = (uiu^{-1}, uju^{-1}, uku^{-1})$ with (ijk) being the standard frame in $\Im H$. The above action of \mathbb{Z}_2 lifts to S^3 producing the group K generated by by multiplication by the quaternionic unit on $u, u \mapsto u(\pm i), u(\pm j), u(\pm k)$ and $SO(3)/\mathbb{Z}_2^2$ being the orbit space,

$$X \sim_{homotopy} S^3/K$$

Thus the fundamental group of X and $SO(3)/\mathbb{Z}_2^2$ is $\{\pm 1, \pm i, \pm j, \pm k, \}$, the Cayley/Hamiltonian group with 8 quaternionic units.

8. Formulate and prove the Brouwer's fixed point theorem for the *closed unit square* $[0, 1]^2$ in \mathbb{R}^2 .

See the textbook. The same proof of the closed disc works also for the square.