INTEGRATION THEORY (2010) $(\mathbf{GU}[MAF440], \mathbf{CTH}[TMV100])$

ASSIGNMENT 2

(Must be handed in at the latest Tuesday at 11^{45} , week 40) (6 p = 1 credit point)

1. (1 p) Compute

$$\lim_{n \to \infty} \int_0^n (1 + \frac{x}{n})^n e^{-2x} \cos x dx$$

2. (1 p) Suppose (X, \mathcal{M}, μ) is a positive measure space and (Y, \mathcal{N}) a measurable space. Furthermore, suppose $f: X \to Y$ is $(\mathcal{M}, \mathcal{N})$ -measurable and let $\nu = \mu f^{-1}$, that is $\nu(B) = \mu(f^{-1}(B)), B \in \mathcal{N}$. Show that f is $(\mathcal{M}^-, \mathcal{N}^-)$ -measurable, where \mathcal{M}^- denotes the completion of \mathcal{M} with respect to μ and \mathcal{N}^- the completion of \mathcal{N} with respect to ν .

3. (1 p) Suppose $f \in L^1(m)$, where *m* is Lebesgue measure on **R**. Prove that the series $\sum_{k=-\infty}^{\infty} f(x+k)$ converges for *m*-almost all *x*.