LOSNINGAR
INTEGRATIONSTEORI (5p)
(GU[M AF440] ,CTH[T MV'100])
Dag, tid: 8 oktober 2004 fm
Hjilpmedel: Inga.

1. Suppose
fo(z)=nlz|e >, zeR, neN,.
Show that there is no g € L'(m) such that f, < g for all n € N .

Solution. We have
lim f,(x) =0, allz € R

n—oo

and
/ fa(@)dz = [Vnz =y| = / ly|e zdy =2, alln e N,.

o0

The Lebesgue Dominated Convergence Theorem now implies that there is no
g € L'(m) such that | f, |< g for all n € N,. Since f, =| f, | we are done.

2. Set -
f(z) = Tlim ilittdt’ x>0
—o0 Jq
- /(@)
x
g(z) = Nk >0

Prove that g is Lebesgue integrable on [0, oo .

Solution. Let x > 0. By partial integration

T sint cosT’ T cost
dt = —— — ——dt
= w+t c+T  Jz (z+1)?




and we get

2 sint * cost
= dt — —dt
/(@) /0 T+t /2 (z +1)2

Note that f is a Borel function by the Tonelli Theorem. Moreover,

% | sint | /°° 1
< dt ——dt
sl [T [ o

and since | sint |< ¢ for t > 0, we get

1 T 2
< Z <42
| f(=) < 2+w—|—§ - 2+7r
Hence 1
[ HD <o
0o VT
Furthermore,

and it follows that

[0y, .

Summing up we conclude that ¢ is Lebesgue integrable on [0, 0o .

3. a) Let M be an algebra of subsets of X and N an algebra of subsets of
Y. Furthermore, let S be the set of all finite unions of sets of the type A x B,
where A € M and B € N. Prove that S is an algebra of subsets of X x Y.

b) Assume M is a o-algebra of subsets of X and N a o-algebra of subsets
of Y and let (X x Y, M ® N, u) be a finite positive measure space. Prove
that to each E € M ® N and ¢ > 0 there exists F' € S such that

p(EAF) < e.

(Here S'is as in Part a).)



Solution. a) The main point in the proof is to show that S is closed under
finite intersections. To see this let

and
where Ay, ..., Ay, C1,....COny € M and By,...,By, Di,....,Dy € N. It is
enough to prove that £ N F € S. But

ENF =U<i<u((A4NC)) x (B;NDy))

1<j<N

and we are done.

To prove that S is an algebra first note that ¢ € § and that S is closed
under finite unions. If F' is as above it remains to prove that the complement
E° belongs to S. But

E° = ﬂé\il(Ak X Bk>c
= My (A X Y) U (X x BY))
and it follows E¢ € S.

b) Let ¥ be the class of all E € M ® N for which the property in b) holds.
Clearly, ¢ € ¥. Now let £ € X. If F € S, then F° € Sand EAF = E°AF*°.
Hence E° € X.

Finally, let E; € ¥, ¢ € N ;. We shall prove that £ = U2, E; € 3. To this
end let € > 0 be arbitrary and choose F; € S such that

w(EB;AF) < 27
for all 7+ € N,. Since
EA(UZLE) C U EAE,

W(EA(UE F) < 52 u(EiAF) <e.

Now
EA(U?ilFi) - (m?;(E N cm)) U (Ec N (Ufile))

and since p is a finite positive measure it follows that

PN (BN ED)) U (E°N (UE F))) <e



if n is sufficiently large. Hence
W(EA(UL F)) = p((MZ (BN F)) U (BN (UL F))) <e

if n is large, which proves that U2, F; € ¥. Thus ¥ is a o-algebra contained
in M ® N and since ¥ contains all measurable rectangles ¥ = M @ N.

4. Formulate and prove the Fatou’s Lemma.

5. Let C be a collection of open balls in R™ and set V' = UgceB. Prove that
to each ¢ < m, (V) there exist pairwise disjoint By, ..., By € C such that

YE m,(B;) >3 "c.
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1. Suppose (X, M, i) is a positive measure space and (Y, ) a measurable
space. Furthermore, suppose f : X — Y is (M, N)-measurable and let
v =pft, that is v(B) = u(f~*(B)) if B € N. Show that f is (M~ ,N")-
measurable, where M~ denotes the completion of M with respect to y and
N~ the completion of N with respect to v.

Solution: Suppose B € N~. We will prove that f~}(B) € M~. To this
end, choose By, By € N such that By C B C B; and v(B; \ By) = 0. Then



“YBy), f7Y(B)) € M and f71(By) C f~YB) C fY(B;). Furthermore,
“YBy)\ f7YBy) = f1(By\ By) and we get

p(f 1B\ f1(Bo)) = v(B1\ By) = 0.

Thus f~'(B) € M~ and we are done.

S
f

2. Compute the following limit and justify the calculations:

[e.9]

lim (1+

n—oo 0

) e " d.

S8

Solution. We have

(1 + z)n2€7nx — 6”2 In(1+%)—nz

2
_ (B2 H(2)B(2)—na

where B is bounded in a neighbourhood of the origin. Accordingly from this,

22

lim (1 + f)"Qe’m" =e 7.
n—oo n

To find a majorant, let x > 0 be fixed and introduce the function
2 :I:
f(n)=n“In(l+—) —nzx
n
defined for all real n > 1. We claim that

2:1:4—:”—”2
1+

f/(n) = 2nn(1 + %) = <0.

To see this put
gt) =2(1+t)In(1 +¢t) — (2t +*) for t > 0
and note that f’(n) <0 if and only if g(¥) < 0. But g(0) = 0 and

gt)=2(In(1+1¢t)—t) <0



and it follows that g < 0. Thus f’(n) < 0 and, hence, f(n) < f(1). Now
xr n? —nzx —x 1
(1+ﬁ) e < (14+x)e® e L (mos)

where mg ~ is Lebesgue measure on [0,00] and the Lebesgue Dominated
Convergence Theorem implies that

o oo 12
lim (1+ f)”Qe’mdm’ = / e~ 2dxr = z.
n—oo 0 n 0 2

3. Suppose a > 0 and

o0

a/
e o
n=0

where §,, is the Dirac measure on N ={0,1,2,...} at the point n € N, that
is 0,(A) = x4(n) if n € N and A C N. Prove that

(Ha X 11)8™" = gy

for all a,b > 0 if s(z,y) =z + vy, v,y € N.

Solution. If 4 and v are finite positive measures on N, we define p*xv =
(u x v)s~'. Now, given a,b > 0 and A € P(N), the Tonelli Theorem implies
that

(ko * 1) (A) = (g % pp)({ (2, y) € N*; x4y € A})

_ /N Hna({z € N3 x4y € ADdpy(y)

and by applying the Lebesgue Monotone Convergence Theorem we have,
o)) =3 [ i €N by € Aty
1=0

i

:Z 5*Nb(A)



In a similar way,
(8; % 1) ( Z e~ 5 % 0;)(A).
i=
Since 0; * §; = d;1j, we get

< i
(Hq * 1) (A) = Z e +b)i!—j!5z’+j(f4)

=0 i—i—jzn n=0
i.7>0

4. Suppose f : ]a,b[ x X — R is a function such that f(¢,-) € £!(u) for each

t € ]a,b] and, moreover, assume gf exists and

19
ot

where g € L1(u). Set

—(t,z) |< g(z) for all (¢t,z) € |a,b] x X

=/f@mM@ﬁWMM.
X
Prove that F' is differentiable and

:L%@WM@MEMW

5. Suppose 6 is an outer measure on X and let M(0) be the set of all A C X
such that

O(E)=0(ENA)+0(EnNA° forall EC X.
Prove that M(f) is a o-algebra and that the restriction of 6 to M(6) is a
complete measure.
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1. Suppose f(z) = xcos(m/z) if 0 < x < 2 and f(z) = 0 if z € R\ |0, 2[.

Prove that f is not of bounded variation on R.

Solution. We have
1

n 1 1
l‘f(k+1) f(%) =Xk | k+1cos(k+1)7r_ECOSk7r’
n 1 1 L1
:Zkzl(k——u_’_E):n 1+1+22k:2E—>ooasn—>oo.

2. Let (X, M,u) be a finite positive measure space and suppose ¢(t) =
min(¢, 1), t > 0. Prove that f,, — f in measure if and only if (| f,—f|) — 0
in L(u).

Solution: =-: For any ¢ > 0,

[oetn-rvans [ ol siin

"‘/ (| fo = f Ddp < / o(e)dp +/ 1dp
|fn—fl>e |frn—fl<e |fn—f|>e

< @(@lX) + (] fu— 1> )
Thus
0 <timsup [ (] £~ £ D < )

n—oo

and by letting € | 0,

T}Lg/){s@(lfn—f\)dMZO-



<: For any € > 0,

p(l fo—=f1>e) <ple] fo—f1) = 9(e)

and the Markov inequality gives

M(’fn—f|>€)§%/Xgo(lfn—fﬂdu.

¥
Thus u(| fo — f|>€) — 0asn — oco.

3. Let P denote the class of all Borel probability measures on [0, 1] and L
the class of all functions f : [0, 1] — [—1,1] such that

| f(2) = fy) <[z =yl z,y[0,1].

For any p,v € P, define
p(p,v) = sup | fdp— | fdv|.
rer  Jp [0,1]

(a) Show that (P,p) is a metric space. (b) Compute p(u,v) if p is linear
measure on [0, 1] and v = 137716, where n € N (linear measure on [0, 1]
is Lebesgue measure on [0, 1] restricted to the Borel sets in [0, 1]).

Solution. (a): (1) Clearly, p(i,v) > 0 and

p(11,v) < ((0,1)) + 1((0, 1)) = 2 < 0.
Moreover, if 1 # v there is a compact set K C [0, 1] such that u(K) # v(K).
If f.(z) = max(0,1 — nd(z, K)), € [0,1], then f, | xg, and the Lebesgue
Dominated Convergence Theorem implies that

nW#[}nw

[0,1] 0,1

if n is sufficiently large. But % fn € L, and, hence, if n is large

1 1
V) = — fndp — — fnd
o) | r /[ |

0,1 ™ 0,1] ™
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— \ fudp — fadv |> 0.
[0,1] [0,1]

Thus p(p,v) > 0.
(2) Since | ¢ | is an even function of ¢, p(u,v) = p(v, ).
(3)If fe L and p,v,7 € P,

| fdp— [ fdv|
[0,1] [0,1]

<| fdu fdr | +| fdr — fdv |
[0,1] [0,1] [0,1]
< p(p, 7) + p(7,v)

and we get p(u,v) < p(p, 7) + p(7, V).
(b) If fe L,

1 1 n—1 ]{Z
| fdu—/ fdv |=| / fydz — =37 p()
[0,1] [0,1] 0 = "

n—1 E+1

Y [ -y

4. Suppose (X, M, u) is a positive measure space and w : X — [0,00] a
measurable function. Define

v(A) = / wdp, Ae M.
A
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Prove that v is a positive measure and

/X fv = /X Fudy

for every measurable function f: X — [0, 00].

5. Suppose f € L .(m,) and set

loc

(A f)(x) = f(y)dy, (z,7) € R" x]0,00]

m /B(m)

where B(z,r) is the open ball of centre x € R™ and radius » > 0 (with
respect to the Euclidean metric d(z,y) =| 2 —y |).
(a) Set
f*(z) = sup | (Acf)(z) |, = € R".

r>0

Prove that
{f* > A} e B(R")if A > 0.

(b) Use the (Wiener) Maximal Theorem to prove that

lim (A, f)(x) = f(z) a.e. [my].

r—0-+
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1. Suppose
re v

f(t) = /Ooo 2w, t > 0.

x2 + 12
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Compute

tlilgfr f(t) and/o f(t)dt.
Finally, prove that f is differentiable.

_z2
ze

Solution. Suppose ¢, | 0. Then for each z > 0, 5
implies that

1 Le=#* and the LMCT
2
> - *1 2
/ Ij—daz T / —e Ydr =0
0o T2+12 0

since e > £xp () if £ > 0 and

1
1
/ —dx = oo.
0 T
Hence

lim f(t) = 0.

t—04
Furthermore, the Tonelli Theorem yields

o0 oo o xe—xz
il N t]=°
—/ [e‘m arctan —]
0

3
[o'e) 3
™ 2 T2
da:——/ e Vdr =
o 2 Jo

Z.
Finally, it is enough to prove that f(¢) is differentiable on the interior of
any given compact subinterval [a,b] of ]0, co[. To this end, first note that

o ze= B 2tre=
otz +12 (22 +12)?
and , ,
0 xe ® 2bxe™*
sup | — 1<
a<t<b

1
otx?+t2 '~ (22 4 a?)? € L' (mo,co)-

Therefore, by a familiar result (Folland Theorem 2.27 or LN, Example 2.2.1)
f'(t) exists for all a < ¢t < b and equals

© 9 ge o p 2t/°° ze
———dx = —
. Ota? 12 o

————dx.
21t
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2. Suppose p is a finite positive Borel measure on R". (a) Let (V;);cs be a
family of open subsets of R™ and V = U,¢;V;. Prove that

(b) Let (F});c; be a family of closed subsets of R" and F' = N;c;F;. Prove
that
p(F)= inf p(F, N..NE,).

i1,in€l
kEN,

Solution. (a) Since V 2 V;, U...UV;, for all 4y,...ix € [ and k € N,

u(V) > -~ sup p(Vi, U UV,,).

To prove the reverse inequality first note that

p(A) = sup p(K)
KCA
K compact
if A€ R,. Now first choose ¢ > 0 and then a compact subset K of R" such
that

p(K) > (V) —e.

Then there are finitely many ¢4,...,72; € [ such that V;, U... UV, D K.
Accordingly from this,

w(Vi, U UV,) > p(V) — e

and we get
sup p(Vi, U...UV;,) > (V).
U] geeey ix€l
keN4
Thus
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b) Since p is a finite measure, by Part (a)
p(F) = p(R") = p(F°)

—u(R")— sup p(FSU..UEY)

01yt €1
k‘eN+
= nf (u(RY) - p(FL U UFL))
01,y €1
FEN

= inf p((FU...UFE)9)
i1yt €1
keN4

= inf wp(F,N..NE,).
i1, ik €1
keNL

3. Suppose f and g are real-valued absolutely continuous functions on the
compact interval [a,b]. Show that the function h = max(f, g) is absolutely
continuous and A’ < max(f’, ¢') a.e. [map] (Mm4p denotes Lebesgue measure
on [a, b]).

Solution. If (A4;)1<i<2 and (B;)1<i<2 are sequences of real numbers

A; < B+ | A — B |

< B;+ max | A; — B; |< max B; + max | A; — B; |

1<i<2 1<i<2 1<i<2
and, hence,
max A; < max | A; — B; | + max B;
1<i<2 1<i<2 1<i<2
and

max A; — max B; < max | A, — B; | .
1<i<2 1<i<2 1<i<2

Thus, by interchanging A; and B;,

| max A; — max B; |< max | A; — B; | .
1<i<2 1<i<2 1<i<2

Next choose € > 0. Then there exists a § > 0 such that

Sk | flar) = f(be) [< e/2
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and
Y1 | glar) — g(be) |[< /2

if n € N, and |a;, b;[, ¢ = 1, ...,n, are mutually disjoint subintervals of [a, b] .
Thus, for such intervals

Y=t | har) = h(by) |

< Spoymax(] f(ar) — f(0r) 1,1 g9lar) — g(bx) |)
< S (] flaw) = f(be) | + | glar) —g(bi) [) <€

and it follows that h is absolutely continuous.
As above it follows that

max A; — max B; < max(A; — B;).
1<i<2 1<i<2 1<i<2

Therefore, for each x € |a,b[ and w € ]0,b — z[,
Wz +w) = h(z) < max(f(z +w) = f(z),9(z +w) - g(2))

and

hatw) —h(r) | Srw) = f(@) gle+w) = gle),

w w w

Since f, g, and h are absolutely continuous, by letting w | 0, we get h'(z) <
max(f'(z), ¢'(z)) for m,p-almost all = € [a, b] .

4. Suppose (X, M, u) is a positive measure space. (a) If f,, — f in measure
and f, — g in measure, show that f = g a.e. [u]. (b) If f,, — f in L', show
that f, — f in measure.

5. (Lebesgue’s Dominated Convergence Theorem) Suppose (X, M, p) is a
positive measure space and f,, : X — R, n € N, measurable functions such
that

| fu(z) < g(x), allz € X and n € N

where g € £!(11). Moreover, suppose the limit lim,, .o, f,(x) exists and equals
f(z) for every z € X.
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Prove that f € L(u),

i [ o= L =0
n_>OOX

and
lim fnd,u:/ fdpu.
n—oo Jx X

LOSNINGAR
INTEGRATIONSTEORI (5p)
(GU[M AF440] ,CTH[T MV'100])
Dag, tid, sal: 9 sept 2006, fm, v
Hjélpmedel: Inga
Skrivtid: 5 timmar

1. Suppose f € L'(m) and [ | f | dm > 0, where m is Lebesgue measure
on R. Moreover, define

1
g(w)zsupm/l|f|dm

1€,

where for each x € R, Z, denotes the class of all open, non-empty intervals /
such that = € I. Prove that the level set {g > ¢} is open for each real ¢ and
that g ¢ L'(m).

Solution. If 2 € {g > ¢} there is an I € Z, such that

1

Hence I C {g > ¢} and it follows that the set {g > c} is open.
By the LDCT we find a,b € R such that a < b and

b
C:def/ ]f]dm>0
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Now if z > b,
1 r+1
d
o)z —— [ 1f1im
C
“rz+1—a

and we conclude that

Consequently, [ gdm = oo and g ¢ L'(m).

2. Let f : R— R be an even Lebesgue measurable function such that
I3 | f(x) | dz < oo and define

_[T1W
|z| Yy

g() dy, © #0

and -
h(t) = / f(z)costxdz, t € R.

[ tew s [T s i

o0 —00

(a) Show that

(b) Show that
o) 1 t
/ g(x) costxdr = ;/ h(s)ds, t # 0.
—00 0

(Hint for (b): First consider the case when f is an even and continuous
function that vanishes in a neighbourhood of the origin and outside a bounded
interval.)

Solution. (a) We have

9(z) |< [m#d% £ £0,
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Moreover, by the Tonelli Theorem

[ s < [[ 24,

lz|<y

:/Ooo|f;y>|(/|zgydx)dy:2/ooo\f(y)|dy=/_Z|f(y)\dy-

(b) The space of all real-valued continuous functions with compact support
is dense in L'(mg o). Therefore by Part (a) and the LDCT it can be assumed
that f is an even continuous function that vanishes in a neighbourhood of
the origin and outside a bounded interval. In addition, since g and h are
even we may assume ¢ > 0. Now the function f(z)cossz, x € R, 0 < s <t
is Lebesgue integrable and by integrating the relation

h(s) = /_: f(z) cos sxdx

with respect to s over the interval [0, ¢] the Fubini Theorem implies that

[nswas = [ sy [ cossaasnao = [ @™

= 2/000 /() sintzdr = 2 {[—g(m) sintx]” + t/ooog(x) cos txdx}

X

= 215/ g(x) costrdr = t/ g(x) costxdz.
0 —

o0

This proves Part (b).

3. Suppose (X, M, 1) is a finite positive measure space and f € L'(x). Define

o(t) = /X | f(2) —t | du(a), t € R.

(a) Prove that

g(t) = g(a) + / (u(f <)~ ulf = s))ds ifa.teR,



19
(b) If ¢ € R and min g = g(c) show that

p(f <c¢)>

and

p(f =c) >

Solution. The special case ;1 = 0 is trivial and it is enough to consider the
case when p(X) > 0. Moreover by replacing p by p/u(X) and g by g/p(X)
it may be assumed that u is a probability measure.

(a) Suppose € > 0 is given and let |ay, bi[, kK = 1,...,n, be disjoint open
intervals such that X7 (b, — ax) < €. Then

| glar) — g(bu) |=| /X F(@) —ax | — | Fy) — b | d(a) |

s/X||f<x>—ak|—\f(x)—bk||du<y>

< [ 1@ = ) = (F@) = b | duts) =] = b |
and consequently

3 L glar) — g(bi) |< e

This proves that ¢ is absolutely continuous and therefore ¢’ exists a.e. with
respect to Lebesgue measure on R and

Let A = {teR; pu(f=t) >0} and note that A is at most denumerable.
To compute ¢'(s) for fixed s ¢ A, let (h,)5° be a sequence of non-zero real
numbers which converges to zero. Then

ot o) =ole) _ [ L5t = ) | =10 S g
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:/ |S+hn_f(xil|_|8_f<x)|du(x)
{f#s} n
Here
st b= f@) | == @] |,
hy,
and

n—oo hn

Thus the LDCT gives
g'(s) = / (X{fr<s) = Xqpssp)dpt = / (X{fr<s) = Xqrssp)dt
{f#s} X

=p(f <s)—p(f>s)=p(f <s)—nulf=s)
In particular,
g'(s) = pu(f <) —p(f >s)

a.e. with respect to Lebesgue measure on R, which proves Part (a).
(b) Since

o) 21t |~ [ 1 ) | duta)
the continuous function g attains a minimum at a certain point c. Now
t
)= 9(0) = [ (s <)+ (7 < 5) — 1
and it follows that
t
/(Q,u(fgs)—l)dsZOifth.

Note that the function pu(f < t) is a right continuous function of ¢. Therefore,
if 2u(f <¢)—1<0then 2u(f <s)—1<0 for all s> ¢ sufficiently close to
¢ which is a contradiction. Thus p(f < ¢) > 1/2. By replacing f by —f and
¢ by —c it follows that pu(—f < —c¢) > 1/2, that is pu(f > ¢) > 1/2.
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4. Let (X, M) and (Y, N) be measurable spaces and suppose z € X and
E € M®N. Prove that the set E, = {y € Y; (z,y) € E} belongs to the
o-algebra N.

5. (Egoroff’s Theorem) Suppose (X, M, ) is a finite positive measure space
and let f,, n € N,, and f be real-valued measurable functions on X such
that f, — f a.e. [u] as n — oco. Show that to every € > 0 there exists E €
M such that u(E) < e and f,, — f uniformly on E*.

Solutions:
INTEGRATION THEORY (7.5 hp)
(GU[M MA110GU] ,CTH|[T MV'100])
October 22, 2009, morning (5 hours), H
No aids.
Examiner: Christer Borell, telephone number 0705292322
Each problem is worth 3 points.

1. Let n € N, and define f,(z) = e*(1 — %)”, x € R. Compute

V2n
n—oo -2

Solution. We have

V2n 00
I, :def/ fulz)dz :/ gn(x)dx
_Jan o

where g, (z) = X[-van,van] (x)e*(1 — g—i)”, x € R. Now

22

tlim gn(x) = €72 =4ep h(2)
and,as e > 1+vy,y€eR,

2

12
(1-— ;—)” <e 7z if —V2n<z<+V2n.
n
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Hence,
| gn(z) |[< h(z), x € R, n € N,
where h € L'(m ) and by using the dominated convergence theorem,
lim I, = lim [ g,(z)dt

n—oo n—oo
—00

* e 1 [T _@-»? 1
= e 2dr = e2 e 2z dr=e2V2T.
— 00

—00

2. Let (X, M, u) be a positive measure space and f : X — R an (M,R)-
measurable function. Moreover, for each ¢ > 1, let

at) = 3 epu(tn <| f |< ),
Show that
tim aft) = [ 1 f1dn

Solution. Define

gt - Z tnX{t7L§|f|<tn+1} lft > 1

n=—oo

and note that the Beppo Levi theorem implies that

/X gyt = alt).

If | f(z) |= 0, then g,(x) = 0. Moreover, if " <| f(z) |< t"*! for some
integer n, then ¢;(x) = t" and| f(x) |> ¢;(x). Thus

|f|29t

/X|f|du2/xgtdu:a(t).

and we get
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Next suppose | f(z) |> 0 and choose n such that t" <| f(z) |< t".

Then

tgi(z) = Z tn+1X{t"§\f|<t"+1}(x) =" > f(a) |

n=—oo

and, hence,

Now, by integration,

Thus

t/le|duSa(t)§/X!f|du

tim aft) = [ 1 f1dn

and

3. Suppose (X, M, i) is a finite positive measure space and f € L'(u). Define

o(t) = /X | f(2) —t | du(a), t € R.

Prove that ¢ is absolutely continuous and

o) =9(@)+ [ (u(f < 5) = p(f 2 )ds HateR,

Solution. Suppose € > 0 is given and let |ag, bi[, K = 1,...,n, be disjoint

open intervals such that X7 | by — ay |< /(1 + p(X)). Then

| g(ar) = g(be) |=| /X | (@) —ax | = | f(x) = b [ dp(z) |

g/X||f<x>—ak|—\f<x>—bk||du<x>

< [ @) = a) = (@) = b) | di(e) = n(X) |11 = |
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and, consequently,
n

E:Im%)—mmﬂge.

1

This proves that ¢ is absolutely continuous and therefore ¢’ exists a.e. with
respect to Lebesgue measure on R and

t
g(t) = g(a) —I—/ g'(s)ds for all t € R.

Let A= {t € R; u(f =1t) > 0} and note that A is at most denumerable.
To compute ¢'(s) for fixed s ¢ A, let (h,)° be a sequence of non-zero real
numbers which converges to zero. Then

g®+hd—gwkz/\S+hw—ﬂ@\—|8—ﬂ@|
X ha

dpi(z)

{f#s} n
Here
ha,
and

SR CISTE CIN R EES T
—1if s < f(x).

n—oo hn

Now the dominated convergence theorem gives
g'(s) = / (X{f<s} - X{f>s})d,u = / (X{f<s} - X{f>s})d,u
{f#s} X

=pu(f <s)—plf>s)=plf <s)—ulf =s)
In particular,
g'(s) = p(f <s)—u(f >s)

a.e. with respect to Lebesgue measure on R and since g is absolutely con-
tinuous we have

o= 9@+ [ ((F <)~ plf 2 )ds Hat R
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4. Suppose (X, M, u) is a positive measure space and A, € M, n € N,. Set

E = U A, and F = ﬂ A,

TLGN+ n€N+

(a) Show that
lim p(An) = p(E)

n—oo

if Ay C Ay C A3C ...

(b) Show that
lim ji(An) = u(F)

n—oo

lfu(Al) < oo and A1 2142 2143 D ...

5. State and prove the monotone convergence theorem.

Solutions:
INTEGRATION THEORY (7.5 hp)
(GU[M M A110] ,CTH[T MV'100])
January 11, 2010, morning (5 hours), v
No aids.
Examiner: Christer Borell, telephone number 0705292322
Each problem is worth 3 points.

1. Suppose p € N, and define f,(x) = nP2P~1(1 — )", 0 < z < 1, for every

n € N,. Show that
1

lim falz)dx = (p— 1)\

n—oo 0

Solution. We have

/01 fo(z)dz = {:v = %} = /On (1 - %)"dt
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(0. 0] 3 t .
— [ ey
0 n
Set gn(t) = X[o,n}(t)tpfl(l — %)”,t > (. Then
tlim gn(t) = A —ges h(t)
and, as ¢V > 1+ vy, y € R, it follows that
| gu(t) < R(t), t>0, ne Ny.

Here h € £'(m on [0, 00[), and by using the dominated convergence theorem

we have
1 e’}

lim [ fo(z)dz= lim [ g,(t)dt

= /Ooo e tdt =T (p) = (p — 1)L.

2. Let (X, M, 1) be a probability space and suppose the sets Ay, ..., A, € M
satisfy the inequality > 7 1(A;) > n — 1. Show that u(NTA4;) > 0.

Solution. We have

n n

S w4 = D= () =0 = 3 A <n—(n—1) = 1

1 1

Hence
p(JA5) <D n4) <1
and . . .
w()A) = (A =1-nlJ 45 > 0.

3. Let 1 and v be probability measures on (X, M) such that | u—v | (X) = 2.
Show that p L v.
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Solution. Set ¢ = (4 +v)/2 and note that p and v are absolutely continuous
with respect to the probability mesure o. By applying the Radon-Nykodym
theorem we get non-negative measurable functions f and g such that dy =

fdo and dv = gdo. Here
/fdaz/gdazl,
b's b's

A —v) = (f — g)do
and

dip—vi|=lf—gldo.
Now, since | f — g |< f+ g,

2= [ 1f-gldr< [ (7+gpdr =2

and we conclude there exists a set A € M with 0(A4) = 1such f+g=| f—g |
on A or, stated otherwise, (f +¢)?> =| f —g |* on A. Thus fg =0 on A. Now
set P ={x € A; f(x) >0} and N = P°. Then u(P) =1 and v(N) =1 as
p(A€) = v(A°) = 0. This proves that u L v.

4. State and prove Fatou’s Lemma.

5. Let v be a finite signed measure and p a positive measure on (X, M).
Show that v << p if and only if for every € > 0 there exists § > 0 such that
| v(E) |< € whenever u(E) < 4.

Solutions:
INTEGRATION THEORY (7.5 hp)
(GU[M M A110] ,CTH[T MV'100])
August 16, 2010, morning , V.
No aids.
Examiner: Christer Borell, telephone number 0705292322
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Fach problem is worth 3 points.

1. Let (X, M, 1) be a positive measure space, {Ey},_, a collection of mea-
surable sets, and {c},_, a collection of positive real numbers. Set

v(A) =) au(ANEy), Ae M.

k=1

Show that v is absolutely continuous with respect to 1 and find its Radon-
Nikodym derivative j—:.

Solution. If A € M and u(A) = 0 we have (AN E,) =0for k=1,...,n
and it follows that v(A) = 0. Hence v << p. Moreover, if A € M,

n

v(A) = ch/AXEde = /AZCkXEde
k=1

k=1

and thus

2. Suppose a > 1. Show that

/000 ! dr = 27T (a)s(a)

e2r — 1
where -
I'(a) = / t* e tdt
0
and .
¢(a) = Z n= .
n=1

Solution. We have

o) .’L’a_l o] ma—le—x
I =4 de =271 dx
def /0 e2r — 1 /0 1—e*
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o0

o0
= 2‘“/ zv e E e "dx.
0 n=0
Thus by monotone convergence
0 00
=2 E / 2 e e dy
n=0"0

oo 1 00 oo 1
— 9@ I — a—le=ydy = 27T —_—
Z (TL + 1)(1 /0 Yy € Y <a) Z (TL + 1)(1

n=0 n=0
=2"T(a)s(a).
3. Suppose

1
p(A) = m(4) = 3 / e Mdt, A € By,
A

fo = f4 X fby ..., and  p,, = ,,_; X i, n > 2. Moreover, let ¢ > 0 and define

A, ={zeR" |[z]* —2n|<en}

where | x |= /a2 + ...+ 22 if ¥ = (21, ...,x,) € R". Show that

20

A <
Nn( n) = ne?

and conclude that
lim pu,(A,) = 1.

n—o0

Solution. First note that p,, is a probability measure and

/Rt2du(t) = 2.

By the Markov inequality

1
n2e?

pa (A7) < (| = [* —2n)*dp,,(z)

T

n
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:n2522/n

Here, if j # k,

| @2

and we get

where

Consequently,

1<]<k<n

2 9)du, (x) = /R (a2 — 2)dp(z) / (22 — 2)dpu(y)

R

O:/R( — 2)2du(t) = 20.

lim f1,,(A7) =0

and since 1 — p,, (A%) = p,,(A,) < 1, we have

lim pu,(A,) = 1.

n—oo

s | -2k - 2 a).

=0

4. Let C be a collection of open balls in R™ and let V' = UgceB. Prove that

to each ¢ < m,(V), there exist pairwise disjoint By, ...,

¥F mn(B;) >3

(Here m,, denotes Lebesgue measure on R".)

5. State and prove the Hahn decomposition theorem.

By, € C such that



