INTEGRATION THEORY (2011)

 $(\mathbf{GU}[MMA110], \mathbf{CTH}[tmv100])$

ASSIGNMENT 1

(Must be handed in at the latest Tuesday at 11^{45} , week 38) (18 p = 1 credit point)

1. (3 p) Let (X, \mathcal{M}, μ) be a positive measure space. Show that

$$\mu(\cap_{k=1}^n A_k) \le \sqrt[n]{\prod_{k=1}^n \mu(A_k)}$$

for all $A_1, ..., A_n \in \mathcal{M}$.

2. (3 p) Let $A \subseteq \mathbf{R}$ be Lebesgue measurable and m(A) = 1. Show that there exists a Lebesgue measurable set $E \subseteq A$ such that $m(E) = \frac{1}{2}$.

3. (3 p) Suppose μ is a σ -finite positive measure on \mathcal{R} . Prove that the set of all $x \in \mathbf{R}$ such that $\mu(\{x\}) > 0$ is at most denumerable.