INTEGRATION THEORY (2011) (**GU**[*MAF*110],**CTH**[*tmv*100])

ASSIGNMENT 2

Must be handed in at the latest Tuesday at 11^{45} , week 40. (18 p = 1 credit point)

1. (3 p) Let (X, \mathcal{M}, μ) be a positive measure space and $f: X \to [0, \infty[$ an $(\mathcal{M}, \mathcal{R})$ -measurable function such that $f(X) \subseteq \mathbf{N}$ and

$$\int_X f d\mu < \infty.$$

Prove that

$$\lim_{n \to \infty} nG(n) = 0$$

and

$$\int_X f d\mu = \sum_{n=1}^{\infty} G(n)$$

if $G(t) = \mu(f \ge t)$ for every $t \ge 0$.

2. (3 p) Compute

$$\lim_{n \to \infty} \int_0^1 \frac{1 + 2n^2 x^4}{(1 + x^2)^n} dx.$$

3. (1+1+0.5+0.5 p) Let (X, \mathcal{M}, μ) be a positive measure space and suppose $f, g: X \to [0, \infty[$ are $(\mathcal{M}, \mathcal{R})$ -measurable functions such that

$$\int_A f d\mu = \int_A g d\mu \text{ if } A \in \mathcal{M}.$$

(a) Prove that f = g a.e. $[\mu]$ if $\mu(X) < \infty$, $\sup_X f < \infty$, and $\sup_X g < \infty$.

- (b) Prove that f = g a.e. $[\mu]$ if μ is finite.
- (c) Prove that f = g a.e. $[\mu]$ if μ is σ -finite.
- (d) Prove that the conclusion in Part (c) may fail if μ is not σ -finite.