INTEGRATION THEORY (2011) (**GU**[*MAF*110],**CTH**[*tmv*100])

ASSIGNMENT 3

Must be handed in at the latest Tuesday at 11^{45} , week 42. (18 p = 1 credit point)

1. (3 p) A Borel probability measure μ on \mathbf{R}^n is given by the equation $d\mu = a \exp(-|x|^n) dx$, where a is a positive constant. (a) Find a. (b) Find the μ -measure of the Euclidean ball $B = \{x \in \mathbf{R}^n; |x| \le 1\}$.

2. (3 p) Let I =]0, 1[and

$$h(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}, \ (x,y) \in I \times I.$$

Prove that

$$\int_{I} (\int_{I} h(x, y) dy) dx = \frac{\pi}{4},$$
$$\int_{I} (\int_{I} h(x, y) dx) dy = -\frac{\pi}{4}$$

and

$$\int_{I \times I} |h(x, y)| \, dx dy = \infty.$$

3. (1+1+1 p) Suppose ν is a signed measure on (X, \mathcal{M}) and $E \in \mathcal{M}$. Prove that

(a) $|\nu(E)| \leq |\nu| (E)$. (b) $\nu^+(E) = \sup \{\nu(F); F \subseteq E\}$. (c) $|\nu| (E) = \sup \{\Sigma_1^n | \nu(E_j) |; n \in \mathbf{N}_+, E_1, ..., E_n \text{ disjoint, and } \cup_1^n E_j = E\}$.