
Riesz products on T.

T = R/2πZ, though sometimes we replace 2π by 1.
Riesz products are measures defined as µ(aj) = lim∗

n→∞ Πn
j=1(1 + aj cos(λjx)

where (λj) is some lacunary1 sequence. The sequence (aj) should consist of integers
in the interval [−1, 1].

First of all let us observe that µn
(aj)

= Πn
j=1(1 + aj cos(λjx) are all positive

functions with integral 1 (the later will be shown later), so their L1-norm is bounded.
One can use Riesz representation theorem which identify finite regular measures on
X with bounded linear functionals on C0(X) (in our case, X = T, the later is
simply continuous functions). Then by another theorem which you’ll learn in the
Functional Analysis course any bounded has weak*-limit point (and sometimes even
several such points), i.e. when we are talking about lim∗ the difficult part is to show
its uniqueness. We will, though, take a shortcut.

By presenting cos in exponential form we see that Πn
j=1(1 + aj cos(λjx) =∑

(Πj(aj/2)
ϵj )exp(x2πi

∑
ϵjλj) where the sum is taken over all n-tuples of (ϵj)

where ϵj = 0, 1,−1. As the sequence (λj) is lacunary there is no simplification of
this sum of exponential functions. Thus for every n either there is no presentation

of n as
∑

ϵjλj and then µ̂m
(aj)

(n) = 0 for all k, or there is one and then for all

sufficiently large k the Fourier coefficient µ̂m
(aj)

(n) is fixed.

Thus, for every trigonometric polynomial p(x) the value < p, µm
(aj)

> does not

depend from m, as soon as m is large enough, i.e. we can define limm→∞ <
p, µm

(aj)
> for all trigonometric polynomials.

As trigonometric polynomials are dense in C(T), and the defined functional is
obviously bounded we can extend the functional from the trigonometric functions
to all of C(T) and thus obtain a unique limit of µm

(aj)
, call it µ(aj).

We want now see whether µ(aj) is singular.

Theorem 1. Let µ(aj) and µ(bj) are two Riesz products based on the same lacunary

sequence {λj}. Then
∑

|aj − bj |2 = ∞ implies that the measures are mutually
singular.

Corollary 2. If
∑

|aj |2 = ∞ then the Riesz product is singular with respect to
Lebesgue measure.

Proof of the Corollary. Take bj = 0 for all j. Them µ(bj) is the Lebesgue measure.
�

Proof of the Theorem. Consider fa
j = eiλj − aj/2. Those functions are continuous,

so fa
j ∈ L2(T, µ(aj)).

For n ̸= m holds < fa
m, fa

n >= µ̂(aj)(λm−λn)−am/2µ̂aj (−λn)−an/2µ̂(aj)(λm)+

an/2am/2 = 0, where the scalar product is taken in L2(T, µ(aj)). At the same

time ∥fa
j ∥2 =< fa

j , f
a
j >= µ̂(aj)(0) − aj/2µ̂(aj)(−λj) − aj/2µ̂(aj)(λj) + (aj/2)

2 =

1 − (aj/2)
2 > 3/4. I.e. the collection of the function fa

j is orthogonal system,

and
∑

cjf
a
j converges in L2(T, µ(aj)) iff

∑
|cj |2 is convergent. One can repeat this

argument for (bj).

1Lacunary means that every number can be presented in at most one way by a combination of
(λj) with coefficients {0, 1,−1}. In practice it is enough to require λj+1/λj ≥ 3 and sometimes

one use this last condition as a definition of lacunarity.
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Let
∑

|aj − bj |2 = ∞ then there exists (cj) such that
∑

cj(aj − bj) = ∞ and∑
|cj |2 < ∞. (Proof this as an exercise. Hint: consider separately cases when the

sequence (|aj − bj |) is bounded or not.)
Consider the series

∑
cnf

a
n . It is convergent in L2(T, µ(aj)). By the result about

connection of different modes of convergency, we can choose a sequence nk such

that the functions Sa
k =

nk∑
j=1

cnf
a
n converges µ(aj)-a.e.

Also,
∑

cnf
b
n is convergent in L2(T, µ(bj)). In particular, the Sb

k are convergent in

L2(T, µ(bj)), and we can again choose a subsequence Sb
km

which converges µ(bj)-a.e.

At the same time Sb
km

=
nkm∑
j=1

cjf
b
j =

nkm∑
j=1

cjf
a
j +

nkm∑
j=1

cj(aj−bj) = Sa
km

+
nkm∑
j=1

cj(aj−

bj), where the last term diverges in every point (it is constant). I.e. Sb
km

should
diverge in the points in which Sa

km
converges. Take as E the set of points where

Sa
km

converge. µ(aj)(T \E) = 0, at the same time as µ(bj)(E) = 0. This shows that
the measures are mutually singular. �


