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1 Preface
These lecture notes are written when the course in integration theory is for the first
time in more than twenty years, given jointly by the the two divisions Mathematics
and Mathematical Statistics. The major source is G. B. Folland: Real Analysis,
Modern Techniques and Their Applications. However, the parts on probability
theory are mostly taken from D. Williams: Probability with Martingales. Another
source is Christer Borell’s lecture notes from previous versions of this course, see

www.math.chalmers.se/Math/Grundutb/GU/MMA110/A11/

2 Introduction
This course introduces the concepts of measures, measurable functions and Lebesgue
integrals. The integral used in earlier math courses is the so called Riemann in-
tegral. The Lebesgue integral will turn out to be more powerful in the sense that
it allows us to define integrals of not only Riemann integrable functions, but also
some functions for which the Riemann integral is not defined. Most importantly
however, is that it will allow us to rigorously prove many results for which proofs
of the corresponding results in the Riemann setting are usually never seen by stu-
dents at the basic and intermediate level. Such results include precise conditions
for when we can change order of integrals and limits, change order of integration
∗Chalmers University of Technology
†Göteborg University
‡jonasson@chalmers.se



in multiple integrals and when we can use integration by parts. Of course, we will
also prove many new results.

The concept of measurability is an advanced one, in the sense that a lot of
people at first find it difficult to master; it tends to feel fundamentally more abstract
than things one has encountered before. Therefore, a natural first question is why
the concept is needed. To answer this, consider the following example.

Let X = R/Z, the circle of circumference 1, with addition defined modulo 1.
Suppose we want to introduce the concept of the length of subsets ofX . A natural
first assumption is that one should be able to do this so that the length is defined
for all subsets of X . It is also extremely natural to claim that the length l, should
satisfy

• l(∅) = 0,

• l(X) = 1,

• l(∪∞1 )An =
∑∞

1 l(An) for all disjoint A1, A2, . . .,

• l(A+ x) = l(A) for all A ⊆ X and x ∈ X .

However, if we insist on defining l for all subsets, this turns out to be impossible.
Let us see why.

Partition X into equivalence classes by saying that x and y are equivalent if
x− y is a rational number. By the axiom of choice, there exists a set A containing
exactly one element from each equivalence class. For each q ∈ Q ∩X , let Aq =
A + q. Then

⋃
q Aq = X , for since for each x ∈ X , A contains an element y

equivalent to x, i.e. x ∈ Ax−y and x− y ∈ Q.
On the other hand, theAq’s are disjoint, for if x ∈ Aq1∩Aq2 , then x = y+q1 =

z + q2 for two elements y, z ∈ A. However, then y− z = q2− q1 ∈ Q, so y and z
are equivalent, contradicting the construction of A.

If we could assign lengths to the Aq’s, then these lengths must be equal by the
fourth condition on l. On the other hand, the lengths of the Aq’s must sum to 1 by
the third condition. However, these two conditions are mutually exclusive.

The moral of the example is that the set A must be declared non-measurable;
no length of A can be defined. The construction of the example is based on the
axiom of choice and it can be shown that all constructions of non-measurable sets
must rely on the axiom of choice.

There are even more absurd examples than this one. The famous Banach-
Tarski paradox proves, using the axiom of choice, that for any two bounded com-
pact sets in R3, the one can be divided into a finite number of parts which can be
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translated and rotated and mirrored and then put back together to form the other.
For example: any grain of sand can be divided into a number of pieces that can be
put back together to form a ball the size of the earth! Clearly theses pieces cannot
have a well defined volume.

Examples like these call for a theory of measures and measurable sets.

3 Measures
We are going to consider measures in a very general framework: we will consider
measures on a an abstract space X on we which we make no initial assumptions
whatsoever. As the above example revealed, it is not always possible with mean-
ingful measures defined on all subsets of X . Hence a concept of what classes
of subsets to define a desired measure on, is needed. The two last conditions on
a length measure in the above example were natural in that particular situation,
but it is easy to think of other situations where neither of them is natural or even
meaningful. The two first conditions however, are such that they should hold for
anything that deserves to be called a measure, no matter what structure X has.
Thus we keep those two conditions in mind, and ask for classes of subsets large
enough to ensure that all interesting set operations on measurable sets results in a
measurable set, but restrictive enough to make sure that no conflict with the basic
assumptions arises. The answer is σ-algebras.

3.1 Algebras and σ-algebras
Definition 3.1 Let A be a class of subsets of X such that

(i) X ∈ A,

(ii) Ec ∈ A whenever E ∈ A,

(iii) E ∪ F ∈ A whenever E,F ∈ A.

Then A is called an algebra (on X).

Note that by (i) and (ii), ∅ = Xc ∈ A. Also, if E,F ∈ A, then E ∩ F =
(Ec ∪ F c)c ∈ A by (ii) and (iii).

Definition 3.2 LetM be a class of subsets of X such that
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(i) X ∈M,

(ii) Ec ∈M whenever E ∈M,

(iii)
⋃∞
n=1En ∈M whenever E1, E2, . . . ∈M.

ThenM is called a σ-algebra.

Clearly any σ-algebra is an algebra. As above ∅ ∈ M, and analogously, if
E1, E2, . . . ∈M, then

⋂
nEn = (

⋃
nE

c
n)c ∈M.

A measure will always be defined on a σ-algebra. The smallest possible σ-
algebra on any space X is {∅, X}. The largest σ-algebra is P(X), the class of
all subsets of X (but we have seen that meaningful measures cannot always be
defined on this σ-algebra).

IfM is a σ-algebra on X , then the pair (X,M) is called a measurable space
and a set E ∈M is calledM-measurable.

3.2 Generated σ-algebras
Let C be an arbitrary class of subsets of X . We define the σ-algebra generated by
C as the smallest σ-algebra containing C, i.e.

σ(C) =
⋂
{F : F σ-algebra, F ⊇ C}.

(It is an easy exercise to show that any intersection of σ-algebras is a σ-algebra.)
The most important example is the Borel σ-algebra; ifX is a topological space

and T is the class of open sets, then the Borel σ-algebra, B(X), is given by

B(X) = σ(T ).

Since any open set in R is a countable union of open intervals, it follows that

B(R) = σ((a, b) : a, b ∈ R).

It is now easy to see (check this!) that we also have

B(R) = σ([a, b) : a, b ∈ R) = σ((a, b] : a, b ∈ R) = σ([a, b] : a, b ∈ R)

= σ((−∞, b) : b ∈ R) = σ((a,∞) : a ∈ R).

In integration theory, one often works with the extended real line, R = [−∞,∞]
and, even more, with the extended positive half-line R+ = [0,∞]. Here the arith-
metics involving the points∞ and −∞ work as one would intuitively guess, and
an interval is regarded as open if it is either a subset of R and open as such, of the
form [−∞, a) or (a,∞], or the whole space. It is now straightforward to prove
analogous expressions for B(R) and B(R+).
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3.3 Measures
If C is a class of subsets ofX and µ0 : C → R+, then µ0 is called a set function. Let
A be an algebra. If µ0 is a set function on A such that µ0(∅) = 0 and E,F ∈ A,
E ∩F = ∅ implies µ0(E ∪F ) = µ0(E) +µ0(F ), then µ0 is said to be additive. If
µ0(∅) = 0 and µ0 satisfies the stronger condition that µ0(

⋃
nEn) =

∑
n µ0(En)

whenever E1, E2, . . .A and
⋃
nEn ∈ A, then µ0 is said to be countably additive

or a premeasure. (Stronger since additivity follows from countable additivity by
taking E1 = E, E2 = F and E3 = E4 = . . . = ∅.)

Definition 3.3 LetM be a σ-algebra and µ a set function defined onM. If µ is
countably additive, then µ is said to be a measure.

Let µ be a measure on the σ-algebraM. Here are a few classifications.

• µ is said to be finite if µ(X) <∞.

• µ can be said to be a probability measure if µ(X) = 1.

• µ is said to be σ-finite if there exist setsE1, E2, . . . ∈M such that
⋃
nEn =

X and µ(En) <∞ for all n.

• µ is said to be semi-finite if for every E ∈ M such that µ(E) = ∞, there
exists a set F ⊂ E such that 0 < µ(F ) <∞.

The trivial measure is the measure µ with µ(E) = 0 for all E ∈ M. Clearly
any probability measure is finite, any finite measure is σ-finite and every σ-finite
measure is semi-finite.
Example. Let µ(∅) = 0 and µ(E) = ∞ for any nonempty measurable E. Then
µ is a measure which is not even semi-finite. 2

Example. Length measure on [0, 1] (which, to be true, we have not defined yet) is
a probability measure. Length measure on R is σ-finite; take e.g. En = (−n, n).
2

WhenM is a σ-algebra on X and µ is a measure onM, the triple (X,M, µ)
is called a measure space. If µ(X) = 1, then we may also speak of (X,M, µ) as
a probability space and if we do that, we usually refer toM-measurable sets as
events.
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Remark. Suppose that µ(X) = 1. Then we can choose to call µ a probability
measure and (X,M, µ) a probability space. Whether or not we actually do that
depends on the point of view we want to adopt. In many situations it is either our
main purpose to model a random experiment or it is instructive or useful for some
other reason to think of the points x ∈ X as the possible outcomes of a random
experiment. If this is not the case, we may instead prefer to just refer to µ as a
finite measure of total mass 1.

Some general properties of measures follow. In all of these, it is assumed that
(X,M, µ) is a measure space.

Proposition 3.4 (a) E,F ∈M, E ⊆ F ⇒ µ(E) ≤ µ(F ).

(b) E1, E2, . . . ∈M⇒ µ(
⋃
nEn) ≤

∑
n µ(En),

(c) If µ(X) <∞, then µ(E ∪ F ) = µ(E) + µ(F )− µ(E ∩ F ),

(d) If µ(X) <∞, E,F ∈M and E ⊆ F , then µ(F \ E) = µ(F )− µ(E).

Proof. By additivity of µ, µ(F ) = µ(E) + µ(F \ E) whenever E ⊆ F .
This proves (d) and since µ(F \ E) ≥ 0, (a) follows too. For (b), let F1 = E1

and recursively Fn = En \
⋃n−1

1 Fj , n = 2, 3, . . .. Then the Fn’s are disjoint and⋃
n Fn =

⋃
nEn, so by (a)

µ(
⋃
n

En) =
∑
n

µ(Fn) ≤
∑
n

µ(En).

Finally (c) follows from

µ(E ∪ F ) = µ(E) + µ(F \ (E ∩ F )) = µ(E) + µ(F )− µ(E ∩ F )

by additivity and (d). 2

Proposition 3.5 (Continuity of measures)

(a) If E1 ⊆ E2 ⊆ . . . and E =
⋃
nEn, then µ(E) = limn µ(En).

(b) If F1 ⊇ F2 ⊇ . . ., F =
⋂
n Fn and µ(F1) <∞, then µ(F ) = limn µ(Fn).
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Proof. For (a), let A1 = E1 and recursively An = En \ En−1. Then E =⋃
nAn and the An’s are disjoint, so

µ(E) =
∞∑
1

µ(Aj) = lim
n

n∑
1

µ(Aj) = lim
n
µ(En)

since En =
⋃n

1 Aj . Now (b) follows from applying (a) to En = F1 \ Fn and
E = F1 \ F and using Proposition 3.4(d). 2

Corollary 3.6 If µ(Nn) = 0 for all n, then µ(
⋃
nNn) = 0.

Proof. Apply e.g. Proposition 3.4(b). 2

3.4 ”Almost everywhere” and completeness
Let S be a proposition about points ofX and suppose that F = {x : S(x) is false}
is measurable. If µ(F ) = 0, then S is said to hold almost everywhere (with respect
to µ if other measures are also under discussion), abbreviated a.e. In case µ is a
probability measure, one often instead says that S holds almost surely, abbreviated
a.s.

If S holds a.e. and T is another proposition such that T (x) is true whenever S
is true, then one would clearly want to think of T as also holding a.e. However
this is not so in general, since even if µ(F ) = 0, it may be the case that some
subset E of F is not measurable. If (X,M, µ) is such that E ∈ M whenever
E ⊂ F , F ∈M and µ(F ) = 0, then the measure space is said to be complete and
µ is said to be a complete measure.

If µ is not complete, then one can always extend the measure space, by defin-
ing the larger σ-algebra

M = {E ∪ F : E ∈M, ∃N ∈M : F ⊂ N,µ(N) = 0}

(exercise: prove thatM is a σ-algebra) and the measure µ onM by µ(E ∪ F ) =
µ(E). Then (X,M, µ) is complete and µ is called the completion of µ.

3.5 Dynkin’s Lemma and the Uniqueness Theorem
Dynkin’s Lemma will be a fundamental tool for theorem proving. It is based on
the concepts of π-systems and d-systems. A π-system is a class I of subsets of X
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that is closed under finite intersections, i.e. E ∩ F ∈ I whenever E,F ∈ I. The
definition of a d-system follows.

Definition 3.7 Let D be a class of subsets of X . Then D is said to be d-system if

(a) X ∈ D,

(b) E,F ∈ D, E ⊆ F ⇒ F \ E ∈ D,

(c) En ∈ D, En ↑ E ⇒ E ∈ D.

Generated d-systems are defined analogously with generated σ-algebras:

d(C) =
⋂
{D ⊇ C : D d-system}.

(Check that any intersection of d-systems is a d-system.)

Theorem 3.8 LetM be a class of subsets of X . ThenM is a σ-algebra if and
only if it is π-system and a d-system.

Proof. The only if-direction is obvious. The if direction follows from that
X ∈ M by (a) in the definition of a d-system, Ec = X \ E ∈ M whenever
E ∈M by (b) and ifEn ∈M, n = 1, 2, . . ., then Fn :=

⋃n
1 Ej = (

⋂n
1 E

c
j )
c ∈M

sinceM is a π-system, so E :=
⋃∞

1 Ej ∈M by (c) since Fn ↑ E. 2

Since any σ-algebra is also a d-system, it follows that σ(C) ⊇ d(C) for any C.
Dynkin’s Lemma provides an answer to when we have equality.

Theorem 3.9 (Dynkin’s Lemma)
If I is a π-system, then d(I) = σ(I).

Proof. It suffices to prove that d(I) ⊇ σ(I). By Theorem 3.8 it thus suffices
to prove that d(I) is a π-system. In other words, it suffices to prove that

D2 := {B ∈ d(I) : B ∩ C ∈ d(I) for all C ∈ d(I)}

equals d(I). The proof is done in two similar steps. For step 1, define

D1 := {B ∈ d(I) : B ∩ C ∈ d(I) for all C ∈ I}.

Since I is a π-system,D1 contains I, so if we can show thatD1 is a d-system, then
D1 = d(I). Part (a) in the definition of a d-system obviously holds. If B1, B2 ∈
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D1 andB1 ⊆ B2, then for any C ∈ I, (B2\B1)∩C = (B2∩C)\(B1∩C) ∈ d(I)
since d(I) is a d-system. Hence part (b) holds for D1. Finally if Bn ∈ D1 and
Bn ↑ B, then Bn ∩ C ↑ B ∩ C, so B ∈ D1 since d(I) is a d-system.

That D1 = d(I) means that D2 ⊇ I, so it suffices now to prove that D2 is a
d-system, which is now done in complete analogy with step 1. (Check that you
can fill this in.) 2

Our first application is the following uniqueness theorem for measures.

Theorem 3.10 (Uniqueness of finite measures)
Suppose that I is a π-system andM = σ(I). If µ1 and µ2 are two measures

on M such that µ1(X) = µ2(X) < ∞ and µ1(I) = µ2(I) for all I ∈ I, then
µ1 = µ2.

Proof. By Dynkin’s Lemma, it suffices to prove that D := {E ∈ M :
µ1(E) = µ2(E)} is a d-system. That X ∈ D follows from the first part of the
assumption. If E,F ∈ D and E ⊆ F , then µ1(F \ E) = µ1(F ) − µ1(E) =
µ2(F )−µ2(E) = µ2(F \E), so F \E ∈ D. Finally if En ∈ D and En ↑ E, then
µ1(En) = µ2(En), so µ1(E) = µ2(E) by the continuity of measures. 2

Corollary 3.11 If two probability measures agree on I, then they are equal.

3.6 Borel-Cantelli’s First Lemma
Definition 3.12 Let E1, E2, . . . be subsets of X . Then

lim sup
n

En :=
∞⋂
m=1

∞⋃
n=m

En

lim inf
n

En :=
∞⋃
m=1

∞⋂
n=m

En.

Note that

lim sup
n

En = {x ∈ X : x ∈ En for infinitely many n}

and
lim inf

n
En = {x ∈ X : x ∈ En for all but finitely many n}.
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One sometimes writes En i.o. for lim supnEn, where i.o. stands for ”infinitely
often”. (There is no corresponding abbreviation for lim infnEn.)

Let (X,M, µ) be a measure space and suppose that E1, E2, . . . ∈ M. Since
a σ-algebra is closed under countable intersections and unions, it is clear that
lim supnEn and lim infnEn are then also measurable.

Lemma 3.13 (Borel-Cantelli’s Lemma I)
If
∑∞

n=1 µ(En) <∞, then µ(lim supnEn) = 0.

Proof. Write Fm =
⋃∞
n=mEn and F = lim supnEn. Then Fn ↓ F . Since⋃M

n=1En ↑ F1 it follows from the continuity of measures (from below) and the
hypothesis that

µ(F1) = lim
M
µ(

M⋃
1

En) ≤ lim
M

M∑
1

µ(En) =
∞∑
1

µ(En) <∞.

Hence the continuity of measures (from above) and the hypothesis imply that

µ(F ) = lim
m
µ(Fm) ≤ lim

m

∞∑
n=m

µ(En) = 0.

2

The Borel-Cantelli Lemma is an important tool, in particular in probability
theory.
Example. (The doubling strategy.)

Assume that (X,M,P) is a probability space and suppose that E1, E2, . . . are
events such that P(En) = 2−n, n = 1, 2, . . .. Then by the Borel-Cantelli Lemma,

P(lim sup
n

En) = P(En i.o.) = 0.

One way to describe this in words is the following. Suppose we play a sequence
of games such that at the n’th game we win one c.u. with probability 1− 2−n and
lose 2n − 1 c.u. with probability 2−n. Each game is fair in terms of expectation,
but by the Borel-Cantelli Lemma, we will almost surely lose money only finitely
many times. Hence, over the whole infinite sequence of games, we will almost
surely win an infinite amount of money. (In practice this strategy fails, of course,
since there are always some bounds that will set things up, e.g. one can only play
a certain number of games in a lifetime.) 2
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3.7 Carathéodory’s Extension Theorem
A set function µ∗ : P(X)→ [0,∞] is said to be an outer measure if

• µ∗(∅) = 0,

• µ∗(E) ≤ µ∗(F ) whenever E ⊆ F ,

• µ∗(
⋃∞
n=1En) ≤

∑∞
n=1 µ

∗(En) for all sets E1, E2, . . ..

If µ∗ is an outer measure, then we say that a set A ∈ P(X) is µ∗-measurable if,
for all E ∈ P(X),

µ∗(E) = µ∗(E ∩ A) + µ∗(E ∩ Ac).

By the definition of outer measure, it is immediate that the left hand side is
bounded by the right hand side, so to prove that a given set A is µ∗-measurable,
it suffices to show that µ∗(E) ≥ µ∗(E ∩ A) + µ∗(E ∩ Ac) for arbitrary E with
µ∗(E) <∞.

Theorem 3.14 (Carathéodory’s Extension Theorem)
Let A be an algebra on X and let µ0 : A → [0,∞] be a countably additive

set function. Then there exists a measure µ on σ(A) such that µ(A) = µ0(A) for
all A ∈ A. If µ0(X) <∞, then µ is the unique such measure.

The uniqueness part follows immediately from Theorem 3.10. The existence
part will be proved via a sequence of claims. These will also reveal some other
useful facts, apart from the statement of the theorem.
Claim I. Let µ∗ be an outer measure and letM be the collection of µ∗-measurable
sets. ThenM is a σ-algebra. Moreover, the restriction of µ∗ toM is a complete
measure.

Proof. It is obvious that X ∈ M. From the symmetry between A and Ac

in the definition of µ∗-measurability, it is also obvious that M is closed under
complements. It remains to show thatM is closed under countable unions.

Suppose that A,B ∈M and let E be an arbitrary subset of X . Then A∪B ∈
M since

µ∗(E) = µ∗(E ∩ A) + µ∗(E ∩ Ac)
= µ∗(E ∩ A ∩B) + µ∗(E ∩ A ∩Bc) + µ∗(E ∩ Ac ∩B) + µ∗(E ∩ Ac ∩Bc)

≥ µ∗(E ∩ (A ∪B)) + µ∗(E ∩ (A ∪B)c)
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where the last inequality follows from thatA∪B = (A∩B)∪(A∩Bc)∪(Ac∩B),
so that the definition of outer measure implies that the first three terms in the
middle expression bound the first term in the last expression, and that (A∩B)c =
Ac ∩ Bc. Hence A ∪ B ∈ M. Moreover, if A ∩ B = ∅, then (A ∪ B) ∩ A = A
and (A ∪ B) ∩ Ac = B, so the applying the definition of µ∗-measurability of A
with E = A ∪B gives

µ∗(A ∪B) = µ∗(A) + µ∗(B).

In summaryM is closed under finite unions and µ∗ is additive onM.
Now suppose that Aj ∈ M, j = 1, 2, . . . are disjoint sets. Write Bn =

⋃n
1 Aj

and B =
⋃∞

1 Aj . Let E be an arbitrary subset of X . By the µ∗-measurability of
An,

µ∗(E ∩Bn) = µ∗(E ∩Bn ∩ An) + µ∗(E ∩Bn ∩ Acn)

= µ∗(E ∩ An) + µ∗(E ∩Bn−1)

so by induction it follows that

µ∗(E ∩Bn) =
n∑
1

µ∗(E ∩ Aj).

Above, we proved thatM is closed under finite unions, so Bn ∈ M for each n.
Hence

µ∗(E) = µ∗(E ∩Bn) + µ∗(E ∩Bc
n) =

n∑
1

µ∗(E ∩ Aj) + µ∗(E ∩Bc
n)

≥
n∑
1

µ∗(E ∩ Aj) + µ∗(E ∩Bc).

Letting n→∞ and using the definition of outer measure, it follows that

µ∗(E) ≥
∞∑
1

µ∗(E ∩ Aj) + µ∗(E ∩Bc) ≥ µ∗
( ∞⋃

1

(E ∩ Aj)
)

+ µ∗(E ∩Bc)

= µ∗(E ∩B) + µ∗(E ∩Bc) ≥ µ∗(E).

Hence all the inequalities must be equalities and it follows that B ∈ M. This
proves that M is closed under disjoint countable unions and, since M is also
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closed under complements, it is an easy exercise to show that this entails that
M is closed under arbitrary countable unions, i.e.M is a σ-algebra. Moreover,
taking E = B gives

µ∗(B) =
∞∑
1

µ∗(Aj)

proving that the restriction of µ∗ to M is a measure. It remains to prove com-
pleteness. Assume that N ∈M, µ∗(N) = 0 and C ⊆ N . Then µ∗(C) = 0 by the
definition of outer measure. Therefore

µ∗(E) ≤ µ∗(E ∩ C) + µ∗(E ∩ Cc) = µ∗(E ∩ Cc) ≤ µ∗(E)

proving that C ∈M. 2

Next assume that µ0 is a countably additive set function on the algebra A.
Define µ∗ : P(X)→ [0,∞] by

µ∗(E) = inf{
∞∑
1

µ0(Aj) : Aj ∈ A,
∞⋃
1

Aj ⊇ E}. (1)

Claim II. µ∗ is an outer measure.
Proof. It is trivial that µ∗(∅) = 0 and E ⊆ F ⇒ µ∗(E) ≤ µ∗(F ). It remains

to prove countable subadditivity. Fix ε > 0. If Ej ∈ P(X), j = 1, 2, . . ., then
for each j one can find Aj(k) ∈ A, k = 1, 2, . . . so that

⋃
k Aj(k) ⊇ Ej and∑

k µ0(Aj(k)) ≤ µ∗(Ej) + ε2−j . Since
⋃
j,k Aj(k) ⊇

⋃
j Ej , we get

µ∗(
⋃
j

Ej) ≤
∑
j,k

µ0(Aj(k)) ≤
∑
j

µ∗(Ej) + ε

and since ε was arbitrary,

µ∗(
⋃
j

Ej) ≤
∑
j

µ∗(Ej)

as desired. 2

For the final two claims, it is assumed that µ∗ is defined by (1) andM is the
σ-algebra of µ∗-measurable sets.
Claim III. µ∗(E) = µ0(E) for all E ∈ A.
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Proof. If E ∈ A, take E1 = A and E2 = E3 = . . . = ∅ in the definition
of µ∗ to see that µ∗(E) ≤ µ0(E). Proving the reverse inequality amounts to
showing that µ0(E) ≤

∑
j µ0(Aj) whenever Aj ∈ A and

⋃
j Aj ⊇ E. Let

Bn = E ∩ (An \
⋃n−1

1 Aj). Then the Bn’s are disjoint and
⋃
nBn = E. By the

countable additivity of µ0, it follows that

µ0(E) =
∑
n

µ0(Bn) ≤
∑
n

µ0(An).

2

Claim IV. A ⊆M.
Proof. Pick A ∈ A and arbitrary E ⊆ X and ε > 0. By the definition of µ∗,

there exist Bj ∈ A such that
⋃
j Bj ⊇ E and

∑
j µ0(Bj) < µ∗(E) + ε. We get,

by the additivity of µ0 on A,

µ∗(E) + ε >
∑
j

µ0(Bj ∩ A) +
∑
j

µ0(Bj ∩ Ac)

≥ µ∗(E ∩ A) + µ∗(E ∩ Ac)

where the last equality follows from the definition of µ∗. 2

Taken together, these four claims prove Carathéodory’s Theorem.

3.8 The Lebesgue measure and Lebesgue-Stieltjes measures
Up to now, we have not seen any concrete examples of non-trivial measures.
When X is a countable space, X = {x1, x2, . . .}, then it is easy to construct
such measures. Take e.g.M = P(X), let {w(xn)}∞n=1 be any collection of non-
negative numbers and let µ be defined by µ(A) =

∑
x∈Aw(x). We have also seen

that for X = (0, 1] andM = P(X), no sensible length measure exists. We are
now equipped with the tools needed to construct a proper length measure on R.
Since it is not possible to do this for all subsets, we have to settle for a smaller σ-
algebra. Clearly sets of the form constructed in Section 2 via the axiom of choice,
are ”unnatural” to expect to be able to measure in terms of length. On the other
hand, any sensible length measure must be able to measure the length of an inter-
val. If we could also measure the length of any set that can be constructed from a
countable number of set operations on intervals, then it is difficult enough to come
up with an example of a set which would not have a length (such as the set A in
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Section 2) and even harder to motivate why one would even wish to give such a
set a length if doing so causes problems. This point of view is what we are going
to adopt.

Now recall that the Borel σ-algebra is the σ-algebra generated by all intervals
and hence, by virtue of being a σ-algebra, contains all sets we wish to assign a
length to. Hence the aim is to construct a length measure on B(R). It turns out to
be slightly more comfortable to restrict to (0, 1] and B(0, 1]. Having done so, we
obviously also have length measures on (n, n+ 1] for all n ∈ Z by translation and
can extend to the whole real line by letting, for E ∈ B(R), defining the length of
E be the sum of the lengths of E ∩ (n, n+ 1], n ∈ Z.

Let X = (0, 1] and let A be the algebra consisting of finite disjoint unions of
intervals of the type (a, b], 0 ≤ a ≤ b ≤ 1. Hence any A ∈ A can be written as⋃n

1 (aj, bj] for some n ∈ Z+ and the (aj, bj]’s disjoint. Define µ0 : A → [0, 1] by

µ0(
n⋃
1

(aj, bj]) =
n∑
1

(bj − aj).

Clearly the length of any set in A must be given by µ0(A), so we would like to
extend µ to a measure on B(0, 1] = σ(A). By Carathéodory’s Extension The-
orem, there is a unique such extension, provided that µ0 is a countably additive
set function on A. It is trivial that µ0(∅) = 0 and that µ0 is additive, but count-
able additivity is not so clear. It must be proved that µ0(

⋃∞
1 An) =

∑∞
1 µ0(An)

whenever A1, A2 are disjoint sets in A and
⋃∞

1 ∈ A. Since µ0 is finitely additive,
we may assume without loss of generality that the An’s and A consist of a single
interval: An = (an, bn] and A = (a, b].

On one hand, by finite additivity,

µ0(A) = µ0(A \
n⋃
1

Aj) + µ0(
n⋃
1

Aj) ≥ µ0

( n⋃
1

Aj

)
=

n∑
1

µ0(Aj)

for every n, so letting n→∞ gives

µ0(A) ≥
∞∑
1

µ0(Aj).

Now focus on the reverse inequality. Fix ε > 0. The sets (an, bn + ε2−n)
form an open cover of the set compact set [a + ε, b] and can hence be reduced to
a finite subcover (an, bn + ε2−n), n = 1, . . . , N . Let cn = bn + ε2−n and assume
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without loss of generality that c1 ≤ c2 ≤ . . . ≤ cN (otherwise just reorder). We
may also assume without loss of generality that a1 ≤ a2 ≤ . . . ≤ aN , otherwise
discard those intervals that are contained in one of the others; this cannot increase∑N

1 (bj − aj). Then, since cj ≤ aj+1 for all i = 1, . . . , N − 1,

b− (a+ ε) ≤ cN − a1 ≤
N∑
1

(cj − aj) ≤
N∑
1

(bj + ε2−j − aj) ≤
∞∑
1

(bj − aj) + ε.

Hence

µ0(A) = b− a ≤
∞∑
1

µ0(Aj) + 2ε.

This establishes that µ0 is countably additive.
Hence µ0 extends to a unique length measure µ on B(0, 1]. This measure is

known as the Lebesgue measure and the notation we will use for it is m. Looking
back on the proof of Carathéodory’s Extension Theorem, we find that for sets
E ∈ B(0, 1] that are not in A, m(E) is explicitly expressed in terms of µ0 by

µ∗(E) = inf{
∑
n

µ0(An) : An ∈ A,
∞⋃
1

An ⊇ E} (2)

and m the restriction of the outer measure µ∗ to B(0, 1]. Moreover, we recall that
µ0 actually extends to a complete measure on the σ-algebraM of µ∗-measurable
sets. This σ-algebra contains A and hence B(0, 1], but nothing says that it could
not be larger. Indeed, it turns out that M equals the completion of B(0, 1] with
respect tom and that this σ-algebra is strictly larger than the Borel σ-algebra. The
larger σ-algebraM is called the Lebesgue σ-algebra, denoted L(0, 1]. Since this
extension comes at no extra cost, it will be assumed throughout that the Lebesgue
measure is the complete measure defined on L(0, 1], unless otherwise stated.

The construction of the Lebesgue measure can easily be generalized in the
following way. Let F : R → R be a non-decreasing right-continuous function.
Redefine the µ0 above by

µ0,F (
n⋃
1

Aj) =
n∑
1

(F (bj)− F (aj)).

An analogous argument shows that µ0 is countably additive on A and hence ex-
tends to a unique measure µF on B(R). For sets E ∈ B(R) \ A, (2) becomes

µ∗F (E) = inf{
∑
n

µ0,F (An) : An ∈ A,
∞⋃
1

An ⊇ E} (3)
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and µF the restriction of µ∗F to B(R). As for the Lebesgue measure, the σ-algebra
MF of µ∗F -measurable sets is strictly larger than B(R) and the restriction of µ∗F to
MF coincides with the completion of µF . In analogy with the Lebesque measure,
we will henceforth take the notation µF to denote this completion unless otherwise
stated. The measure µF thus constructed is called the Lebesgue-Stieltjes measure
associated to F .

From (3) it follows (exercise!) that a Lebesgue-Stieltjes measure satisfies the
following regularity properties, called outer regularity and inner regularity respec-
tively.

Proposition 3.15 For all E ∈MF ,

µF (E) = inf{µF (U) : U open, U ⊇ E}
= sup{µF (K) : K compact, K ⊆ E}.

Another property in the same vein is the following.

Proposition 3.16 For all E ∈ MF and ε > 0, there exists a set A, which is a
finite union of open intervals, such that

µF (A∆E) < ε.

3.9 The Cantor Set
For any x ∈ R, we have m({x}) = 0, so for any countable subset E ⊆ R,
m(E) = 0. Does the reverse implication also hold? I.e. are countable sets the
only ones to have Lebesgue measure 0? The answer is no. The most well-known
example is the Cantor set. It is constructed the following way. Let for n =
1, 2, . . .,

Dn =
3n−1⋃
j=0

(
(3j + 1)3−n, (3j + 2)3−n

)
.

Let C1 = [0, 1] \D1 and recursively Cn = Cn−1 \Dn. Let C =
⋂∞

1 Cn. The set
C is the Cantor set.

In words, the process is the following. Start with the closed unit interval with
the open mid third removed; this isC1. From the two closed intervals that make up
C1, remove from each of them the open mid third to get C2. Now C2 is the union
of four closed intervals. Remove from each of these the open mid third to get C3,
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etc. The Cantor set is the limiting set of this process. Clearly m(Cn) = (2/3)n,
so by the continuity of measures m(C) = 0.

On the other hand, C has the same cardinality as (0, 1]. To see this, write each
number x ∈ [0, 1] by its trinary expansion:

x =
∞∑
n=1

an(x)3−n

where an(x) ∈ {0, 1, 2}. The expansion is unique for all x except those that are of
the type x = j3−n, j ∈ Z+, for which one can either choose an expansion ending
with an infinite sequence of 0’s or one ending with an infinite sequence of 2’s. In
such cases, we pick the latter expansion. Then

C = {x ∈ {0, 1} : an(x) ∈ {0, 2} for each n}.

Hence, by mapping each 2 to 1, we see that C is in a 1-1-correspondence with the
set of all binary expansions

∑∞
1 bn2−n, i.e. with (0, 1].

4 Measurable functions / random variables
Let (X,M, µ) be a measure space and let (Y,N ) be a measurable space.

Definition 4.1 A function f : X → Y is said to be (M,N )-measurable if
f−1(A) ∈M for all A ∈ N .

So f is (M,N )-measurable if {x ∈ X : f(x) ∈ A} isM-measurable when-
ever A is N -measurable. In words, this could be phrased as that f is measurable
if statements that ”make sense” in terms of the values of f also ”make sense” in
terms of the values of x. See the probabilistic interpretation of this in the example
below.

When one of the σ-algebras is understood, we may speak of f as simplyM-
measurable orN -measurable and ifM andN are both understood, we may speak
of f as simply measurable. If (X,M, µ) is a probability space, an (M,N )-
measurable function is usually called a (Y -valued) random variable.
Example. Let (X,M,P) be a probability space and suppose Y = (R,B(R)). Let
ξ : X → R be a random variable. This means that ξ is a (M,B(R))-measurable
function, i.e.

ξ−1(B) = {x ∈ X : ξ(x) ∈ B} ∈ M
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whenever B ∈ B(R). Hence P(ξ−1(B)) = P(ξ ∈ B) is defined for all Borel sets
B. I.e. measurability means that it makes sense to speak of the probability that ξ
belongs to B for any given Borel set B. 2

Clearly the composition of two measurable functions is measurable. More
specifically, if (Z,O) is a third measurable space, f : X → Y is (M,N )-
measurable and g : Y → Z is (N ,O)-measurable, then, since (g ◦ f)−1(A) =
f−1(g−1(A)), g ◦ f is (M,O)-measurable.

The following result is an indispensable tool for proving that a given function
is measurable.

Theorem 4.2 Let E be a class of subsets of Y and assume that N = σ(E). Then
f : X → Y is measurable if and only if f−1(A) ∈M for all A ∈ E .

Proof. The only if direction is trivial. Let F = {A ∈ N : f−1(A) ∈ M}.
Since F ⊇ E , it suffices to show that F is a σ-algebra. The key is then to recall
that f−1 commutes as an operator with the basic set operations, i.e. f−1(Ac) =
f−1(A)c and

f−1
(⋃

α

Aα

)
=
⋃
α

f−1(Aα), f−1
(⋂

α

Aα

)
=
⋂
α

f−1(Aα)

for all A and Aα and α ranging over arbitrary index sets. Hence

• X = f−1(Y ) and X ∈M (sinceM is a σ-algebra), so Y ∈ F ,

• A ∈ F ⇒ f−1(A) ∈M⇒ f−1(A)c ∈M⇒ f−1(Ac) ∈M⇒ Ac ∈ F ,

• An ∈ F , n = 1, 2, . . . ⇒ f−1(An) ∈ M ⇒
⋃
n f
−1(An) ∈ M ⇒

f−1(
⋃
nAn) ∈M⇒

⋃
nAn ∈ F .

2

Corollary 4.3 If X and Y are topological spaces and M and N are the Borel
σ-algebras, then any continuous function is measurable.

Proof. Let f be continuous and let T be the topology (i.e. the family of open
sets) of Y . By the definition of continuity, f−1(U) is open for allU ∈ T and hence
measurable by the definition of the Borel σ-algebra on X . Since B(Y ) = σ(T )
an application of Theorem 4.2 with E = T gives the result. 2
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Corollary 4.4 A map f : X → R is (Borel)-measurable in either of the following
cases

• f−1[−∞, a] ∈M for all a ∈ R,

• f−1[∞, a) ∈M for all a ∈ R,

• f−1[a,∞] ∈M for all a ∈ R,

• f−1(a,∞] ∈M for all a ∈ R.

Since either of the four classes generate B(R), the proofs follow on mimick-
ing the proof of Corollary 4.3. Of course analogous statements are valid if R is
replaced with R, R+ or R+.
Example. Let X be the sample space of a random experiment. Then ξ : X → R
is a random variable iff {ξ ≤ a} is an event for all a ∈ R. This is sometimes
taken as the definition of a random variable in courses which want to present the
necessary fundamentals without involving unnecessary measure-theoretic detail.
2

Theorem 4.5 Let f, g : X → R be measurable and λ ∈ R a constant. Then
f + g, λf and fg are all measurable functions. The same is true for 1/f provided
that f(x) 6= 0 for all x ∈ X .

Proof. We do f + g and leave the other cases as exercises. By Corollary 4.4 it
suffices to show that {x : f(x) + g(x) < a} ∈ M for all a ∈ R. However

{x : f(x) + g(x) < a} =
⋃
q∈Q

(
{x : f(x) < q} ∩ {x : g(x) < a− q}

)
∈M

since Q is countable and f and g are measurable. 2

Theorem 4.6 Assume that f1, f2, . . . are measurable. Then supn fn, infn fn, lim supn fn
and lim infn fn are measurable. Moreover, the set {x : limn fn(x), exists} is mea-
surable and if limn fn(x) exists for all x, then limn fn(x) is a measurable function.
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Proof. That supn fn is measurable follows from the observation that {x :
supn fn(x) ≤ a} =

⋂
n{x : fn(x) ≤ a}, a countable union of measurable

sets. Since constant functions are trivially measurable, we get that infn fn = 0 −
supn(−fn) is measurable. Since lim supn fn = infm supn≥m fn and lim infn fn =
supm infn≥m fn, these are then also measurable. If limn fn(x) exists for all x, then
limn fn = lim infn fn = lim supn fn and is hence measurable. Finally

{x : lim
n
fn(x) exists} = {x : lim sup

n
(x)− lim inf

n
(x) = 0}

is measurable by Theorem 4.5 (since {0} ∈ B(R)). 2

Example. Construction of a uniform random variable.
Let (X,M,P) = ([0, 1],B,m) and ξ(x) = x, x ∈ X . Then ξ is continuous

and hence a random variable and

P(ξ ≤ a) = m{x : ξ(x) ≤ x} = m{x : x ≤ a} = m[0, a] = a.

2

Example. Construction of a random variable with given distribution.
Assume that F : R→ R is non-decreasing and right continuous with

lim
x→−∞

F (x) = 0, lim
x→∞

F (x) = 1.

We want to construct a random variable ξ so that P(ξ ≤ a) = F (a). Recall the
Lebesque-Stieltjes measure µF . The conditions on F imply that µF is a probabil-
ity measure, so let (X,M,P) = (R,B, µF ) and ξ(x) = x, x ∈ R. Then

P(ξ ≤ a) = µF (−∞, a] = F (a).

An alternative construction is the following, which is most conveniently described
in the case when F is continuous and strictly increasing. Then F−1 exists, so we
can take (X,M,P) = ([0, 1],B,m) and ξ(x) = F−1(x) and get

P(ξ ≤ a) = m{x : F−1(x) ≤ a} = m[0, F (a)] = F (a).

In the general case, one can replace F−1 with the generalized inverse, which maps
all points in [F (x−), F (x+)] to x and points y ∈ [0, 1] for which F−1({y}) is an
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interval, which must have the form [c, d) or [c, d] since F is right continuous, to c.
2

Example. Construction of a sequence of uniform random variables.
Again take (X,M,P) = ([0, 1],B,m). Represent each x ∈ [0, 1] with its

binary expansion

x =
∞∑
1

an(x)2−n.

Each an(x) is a {0, 1}-valued measurable function of x, since a−1
n ({1}) is a union

of 2n−1 intervals (of length 2−n). Let {nij}∞j=1, i = 1, 2, . . . be disjoint sequences
and let

ξi(x) =
∞∑
j=1

anij2
−j.

Then ξ is measurable for each i by Theorems 4.5 and 4.6 (why do we need them
both?) and clearly P(ξi ≤ a) = a as in the first of the previous examples. 2

Example. Construction of a sequence of fair coin flips.
With the same setting as in the previous example, let simply ξi(x) = ai(x). 2

We end this section with a few notes on completeness. Suppose that g is
M-measurable and that f = g a.e. If µ is complete, then this implies that f is
measurable. However if µ is not complete, then this may not be the case. On the
other hand, by the construction of the completion µ of µ, it is clear that f isM-
measurable. Similarly, if µ is complete, f1, f2, . . . measurable and fn → f a.e.,
then f is measurable. (These facts make up Proposition 2.11 in Folland.) Vice
versa, if f is M-measurable, then there exists an M-measurable function such
that f = g µ-a.e. (This last fact is Proposition 2.12 in Folland.)

4.1 Product-σ-algebras and complex measurable functions
Let (Y,N ) be a measurable space and f : X → Y . Then the σ-algebra on X
generated by f is given by

σ(f) := σ{f−1(A) : A ∈ N}.

In other words, σ(f) is the smallest σ-algebra on X that makes f measurable. (In
fact {f−1(A) : A ∈ N} is a σ-algebra (prove this!), so σ(f) equals this set.)
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More generally, if F is a family of functions from X to Y , then

σ(F) := σ{f−1(A) : f ∈ F , A ∈ N}.

Now let (X1,M1) and (X2,M2) be two measurable spaces. The projection maps
π1 and π2 are given by

πi : X1 ×X2 → Xi, πi(x1, x2) = xi

i = 1, 2.

Definition 4.7 The product σ-algebra ofM1 andM2 is given by

M1 ×M2 := σ(π1, π2) = σ{E1 × E2 : Ei ∈Mi, i = 1, 2}.

More generally

∞∏
1

Mn = σ{πn : n = 1, 2, . . .} = σ{
∞∏
1

En : En ∈Mn}

and for a general index set I∏
α∈I

Mα = σ{πα : α ∈ I}

= σ{
∏
α∈I

Eα : Eα ∈Mα and Eα = Xα for all but countably many α}.

Make sure that you understand the equalities in the definitions.

Proposition 4.8 Let (X,M) and (Yα,Nα), α ∈ I , be measurable spaces. A map
h = (fα)α∈I : X →

∏
α∈I Yα is (M,

∏
α∈I Nα)-measurable if and only if each

fα is (M,Nα)-measurable.

Proof. Since fα = πα ◦ h, a composition of two measurable maps, the only if
direction holds. On the other hand, if all fα are measurable, then for any α and
A ∈ Nα,

h−1(π−1
α (A)) = (πα ◦ h)−1(A) = f−1

α (A) ∈M.

Since
∏

αNa is generated by πα, α ∈ I , the if direction now follows from Theo-
rem 4.2. 2
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Proposition 4.9 B(R2) = B(R)× B(R).

Proof. LetA = {(a1, b1)× (a2, b2) : a1, b1, a2, b2 ∈ Q}. Since any open set in
R2 can be written as a countable union of sets in A, we have B(R2) = σ(A). By
definition B(R)× B(R) contains A and hence B(R)× B(R) ⊇ B(R2).

On the other hand, B(R)×B(R) is generated by π−1
i (A), A ∈ B(R), i = 1, 2.

We have π−1
1 (A) = A × R, so it suffices to show that A × R ∈ B(R2) for every

A ∈ B(R). (The similar statement for π2 is of course analogous.) Since A× R is
open in R2 whenever A is open in R, this holds for all open A. Hence, the family
{A ∈ B(R) : A× R ∈ B(R2)} contains all open sets, so if we can show that it is
also a σ-algebra, we are done. This, however, is obvious. 2

Two immediate corollaries follow.

Corollary 4.10 B(C) = B(R)× B(R).

Corollary 4.11 A function f : X → C is (M,B(C))-measurable if and only if
<f and =f are both measurable.

4.2 Independent random variables
In the next sections (X,M,P) will be a probability space.

Definition 4.12 Let I be an arbitrary set and let Eα, α ∈ I , be subclasses ofM.

• We say that {Eα}α∈I is independent if

P(
⋂
j∈J

Ej) =
∏
j∈J

P(Ej)

for all finite J ⊆ I and all Ej ∈ Ej , j ∈ J .

• The family of random variables {ξα}α∈I said to be independent if {σ(ξα)}α∈I
is independent.

• The family of events {Eα}α∈I , is said to be independent if {χEα}α∈I is in-
dependent.

The given definition is completely general in terms of the index set I . Al-
though having I uncountable can be useful sometimes, e.g. when defining Gaus-
sian white noise, it will not be so here, so in the sequel I will be either finite or
countably infinite.
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Lemma 4.13 Assume that I,J ⊆ M are two π-systems and let N = σ(I) and
O = σ(J ). Then {N ,O} is independent if and only if {I,J } is independent.

Proof. The only if direction is trivial. The if direction will be proved by a
two-step procedure. First fix arbitrary I ∈ I and define two measures on O by,
for each B ∈ O, setting

µ1(B) = P(I ∩B)

µ2(B) = P(I)P(B)

By hypothesis µ1 and µ2 agree on J and µ1(X) = µ2(X) ≤ 1 < ∞, so by the
Uniqueness Theorem for measures, µ1 = µ2. Next fix arbitrary B ∈ O and define
two measures on N by setting, for each A ∈ N ,

µ3(A) = P(A ∩B)

µ4(A) = P(A)P(B).

By what we just proved, µ3 and µ4 agree on I. They are also finite and agree on
X , and are hence equal. This proves independence. 2

Clearly Lemma 4.13 extends to all finite collections of π-systems and their
generated σ-algebras. Since independence of an infinite family of σ-algebras is
equivalent to independence of finite subfamilies, Lemma 4.13 also extends to:

Corollary 4.14 Let I1, I2, . . . ⊆M be π-systems. If {I1, I2, . . .} is independent,
then also {σ(I1), σ(I2), . . .} is independent.

The following two examples are important. First observe the following useful
fact. Let f : X → (Y,N ) and suppose that E ⊆ P(Y ) generates N . Then
{f−1(E) : E ∈ E} generates σ(f); this is so since {E ⊆ Y : f−1(E) ∈ σ(f)} is
a σ-algebra, by the commutativity of inverse images and basic set operations.
Example. Let ξ and η be two random variables. Then {ξ−1(−∞, a] : a ∈ R}
and {η−1(−∞, b] : b ∈ R} are π-systems and generate σ(ξ) and σ(η) respectively.
Hence by Lemma 4.13 {ξ, η} is independent iff P(ξ−1(−∞, a] ∩ η−1(−∞, b]) =
P(ξ−1(−∞, a])P(η−1(−∞, b]) for all a, b, i.e. if

P(ξ ≤ a, η ≤ b) = P(ξ ≤ a)P(η ≤ b)

for all a, b ∈ R. More generally, by Corollary 4.14, {ξ1, ξ2, . . .} is independent iff

P(ξi1 ≤ a1, . . . , ξin ≤ an) =
n∏
k=1

P(ξik ≤ ak)
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for all n = 1, 2, . . ., all 1 ≤ i1 < . . . < in and all a1, . . . , an ∈ R. 2

For trivial reasons, {f(ξ), g(η)} are independent whenever ξ and η are inde-
pendent. (Check that you understand why!). Analogously, if {{ξ1, ξ2, . . .}, {η1, η2, . . .}}
is an independent pair of families of random variables (i.e. an independent pair
of R∞-valued random variables; there is nothing in the above definitions that
prevents us from considering random variables taking on values in an arbitrary
space), then f(ξ1, ξ2, . . .) and g(η1, η2, . . .) are independent.

It is intuitively clear that if {ξ1, ξ2, . . .} is independent, then, if we extract two
disjoint subfamilies, these two should make an independent pair of R∞-valued
random variables. The next example shows that this is indeed the case.
Example. Let ξ1, ξ2, . . . be independent random variables and let I and J be two
disjoint index sets (i.e. I, J ⊆ N and I ∩ J = ∅). Then {{ξi1 ≤ a1, . . . , ξin ≤
an} : n = 1, 2, . . . , i1 < . . . < in, a1, . . . , an ∈ R} is a π-system that generates
σ(ξi : i ∈ I) and the analogous π-system generates σ(ξj : j ∈ J).

By the previous example, the two π-systems are independent. Hence the col-
lections (ξi : i ∈ I) and (ξj : j ∈ J) are independent, by Corollary 4.14. 2

To relax our language a bit, let us take the statement ”ξ1, ξ2, . . . are indepen-
dent” to mean that the family {ξ1, ξ2, . . .} is independent. Note that it is actually
important to spell this out, since another interpretation of the statement could have
been that the random variables are all pairwise independent. This, however, is a
much weaker statement. Consider for example the three {0, 1}-valued random
variables ξ1, ξ2, ξ3 given by P(ξ1 = 0, ξ2 = 0, ξ3 = 1) = P(ξ1 = 0, ξ2 = 1, ξ3 =
0) = P(ξ1 = 1, ξ2 = 0, ξ3 = 0) = P(ξ1 = 1, ξ2 = 1, ξ3 = 1) = 1/4, which are
pairwise independent, but clearly not independent since any of them is the xor sum
of the other two. Hence, in the sequel, saying that a set of random variables are in-
dependent means something stronger than saying that the same random variables
are pairwise independent.

Theorem 4.15 (Borel-Cantelli’s Second Lemma)
Let E1, E2, . . . be a sequence of independent events. If

∑∞
1 P(En) =∞, then

P(lim supnEn) = 1.

Proof. Note that(
lim sup

n
En

)c
=

(⋂
m

⋃
n≥m

En

)c

=
⋃
m

⋂
n≥m

Ec
n
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so by the continuity of measures, it suffices to show that P(
⋂
n≥mE

c
n) = 0 for all

m. This in turn follows from the following computations

P

(⋂
n≥m

Ec
n

)
= lim

r
P

(
r⋂
m

Ec
n

)
= lim

r

r∏
m

P(Ec
n)

=
∞∏
m

(1− P (En)) ≤
∞∏
m

e−P(En) = e−
∑∞
m P(En) = 0,

where the second equality follows from independence. 2

Example. Let ξ1, ξ2, . . . be independent random variables with exponential(1)
distribution, i.e.

P(ξ > x) = e−x, x ≥ 0.

Then
P
( ξn

log n
> a
)

= e−a logn = n−a.

Hence
∑∞

n=1 P(ξn > a log n) =
∑∞

n=1 n
−a is finite for a > 1 and infinite for

a ≤ 1. By the Borel-Cantelli Lemmas, this entails that

• if a ≤ 1, then almost surely ξn > a log n for infinitely many n,

• if a > 1, then almost surely ξn > a log n for only finitely many n.

2

4.3 Kolmogorov’s 0-1-law
Let ξ1, ξ2, . . . be independent random variables. For each n, let

Tn = σ(ξn+1, ξn+2, . . .)

and
T =

⋂
n

Tn.

The σ-algebra T is called the tail-σ-algebra (w.r.t. ξ1, ξ2, . . .). A set E ∈ T is
called a tail event and a random variable which is T -measurable is called a tail
function of the ξn’s.

27



A tail event does not, for any n, depend on the first n of the ξk’s, so at a
first glance it may seem that T should be trivial. This, however, would be the
wrong impression, since T actually contains a lot of interesting events. E.g. the
event {x ∈ X : limn ξn(x) exists} is a tail event and η = lim supn( 1

n

∑n
1 ξk)

is a tail function; they are Tn-measurable for every n and hence T -measurable.
Kolmogorov’s 0-1-law states that the probability for a tail event must be either 0
or 1 and that any tail function must be a constant a.s.

Theorem 4.16 (Kolmogorov’s 0-1-law)
Let ξ1, ξ2, . . . be independent random variables.

(i) If E ∈ T , then P(E) ∈ {0, 1},

(ii) If η is T -measurable, then there exists a constant c ∈ R such that η = c a.s.

Proof.

(i) Let Fn = σ(ξ1, . . . , ξn), n = 1, 2, . . .. By the above example, Fn and Tn
are independent. Since T ⊆ Tn, Fn and T are independent for every n.
Hence

⋃
nFn and T are independent. Since

⋃
nFn is a π-system, it fol-

lows that σ(
⋃
nFn) and T are independent. However T ⊆ σ{ξ1, ξ2, . . .) =

σ(
⋃
nFn), so T is independent of itself. This means that for each E ∈ T ,

P(E) = P(E ∩ E) = P(E)2

which entails that P(E) is either 0 or 1.

(ii) For all a ∈ R, P(η ≤ a) ∈ {0, 1} by (i). Let c = inf{a : P(η ≤ a) = 1}.
Then

P(η ≤ c) = P
(⋂

n

{x : η(x) ≤ c+
1

n
}
)

= 1

and
P(η < c) = P

(⋃
n

{x : η(x) ≤ c− 1

n
}
)

= 0.

2

Remark. The independence assumption is of course necessary. Find counterex-
amples to the statement of Kolmogorov’s 0/1-law when the random variables are
dependent.
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Example. (Monkey typing Shakespeare)
Suppose that a monkey is typing uniform random keys on a laptop. There are,

say, N keys on the laptop. The collected works of Shakespeare (to be abbr. CWS)
comprises, say, M symbols. Let E be the event that the monkey happens to type
CWS eventually. Will E occur?

If we let F be the event that the monkey types CWS infinitely many times, then
by Kolmogorov’s 0-1-law, P(F ) is 0 or 1. Let Fn be the event that the monkey
types CWS with the nM + 1’th to (n + 1)M ’th symbols it types. Then P(Fn) =
1/Nm, so

∑
n P(Fn) = ∞ and hence P(lim supn Fn) = 1 by Borel-Cantelli.

Hence
P(E) ≥ P(F ) ≥ P(lim sup

n
Fn) = 1.

So the answer is yes, the monkey will eventually type CWS (but, of course, very
much provided that it has an infinite life and can be persuaded to spend an infinite
amount of time at the laptop). 2

Note that they key in the example was really Borel-Cantelli’s Second Lemma
and that the information provided by Kolmogorov’s 0-1-law was only that P(F ) ∈
{0, 1}. In the next example, the 0-1-law plays a more vital role.
Example. (Percolation)

Consider the two-dimensional integer lattice, i.e. the graph obtained by plac-
ing a vertex at each integer point (n, k) in the Euclidean plane and placing an
edge between (n, k) and (m, j) if either n = m and |k − j| = 1 or k = j and
|n − m| = 1. Now remove edges at random by letting each edge be kept (or
open1) with probability p and removed (or closed) with probability 1 − p, in-
dependently of other edges. The resulting random graph will of course a.s. fall
into (infinitely many) connected components. However, will there be an infinitely
large connected component?

Let E be the event that an infinite connected component exists. Let ξi be
the status, i.e. kept or removed, of edge number i; here assume that edges are
numbered according to their distance from the origin and arbitrarily among those
edges that are equally far away. Now observe thatE is a tail event. This is so since
the presence or absence of infinite components cannot be changed by changing the
status of the first n edges no matter the value of n. (For an outcome where infinite
components exist, changing a finite number of edges can change the number of

1Percolation theory has its origins in the study of water flow through porous materials. The
edges then represent microscopic channels which may or may not be open for water flow.
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such components, but never change presence/absence.) Hence, by Kolmogorov’s
0-1-law, P(E) is 0 or 1.

Determining for what p we have P(E) = 0 and for what p we have P(E) = 1
is a different story. This is of course a general fact about applications of Kol-
mogorov’s 0-1-law; it tells us that a tail event has probability 0 or 1, but never
tells which it is. However, knowing that P(E) is 0 or 1 is still very helpful since
if we can also show that P(E) > 0, then it follows immediately that P(E) = 1.

In the percolation setting of this example, consider the probability that no
vertex in the 2n× 2n-box centered at the origin, is part of an infinite path of kept
edges. It can be shown that this probability is bounded by n(3(1 − p))n. (This is
done by bounding the number of ways that the box can be ”cut off from infinity”.)
This is less than 1 for large enough n if p > 2/3. Hence P(E) = 1 for p > 2/3.
On the other hand, by similar counting, it is easy to see that P(E) = 0 for p < 1/3.
In fact, the critical probability for when P(E) switches from 0 to 1 is p = 1/2.
This a central and highly non-trivial fact of percolation theory. (When p = 1/2,
then P(E) = 0.) 2

5 Integration of nonnegative functions
Defining the Lebesgue integral is a stepwise procedure. It starts with nonnegative
simple functions.

Definition 5.1 A function φ : (X,M, µ) → C is said to be simple if it is of the
form

φ(x) =
n∑
1

zjχEj(x)

for some n, where zj ∈ C and {E1, . . . , En} is a partition ofX such thatEj ∈M
for all j.

Let L+(X,M, µ) denote the set of all M-measurable functions f : X →
[0,∞]. Depending on the level of risk for confusion, we often use shorthand
notations such as L+(X), L+(M) or simply L+.

Definition 5.2 Let φ =
∑n

1 ajχEj , aj ∈ R+ be simple. Then the integral of φ
with respect to µ is given by∫

X

φ(x)dµ(x) :=
n∑
1

ajµ(Ej).
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Example. Let (X,M, µ) = ([0, 1],L,m) and φ = χQ∩[0,1]. Since Q ∩ [0, 1] is
countable, it is measurable, so φ is a simple function and

∫
φdm = m(Q∩[0, 1]) =

0. Compare this with what happens if we try to calculate the Riemann integral of
this function. Since the Riemann integral is defined in terms of approximations of
φ from above and from below by simple functions that are constant on intervals,
we find that the Riemann integral of φ is not defined. Thus, there are functions
defined on an interval of the real line which the Lebesgue integral can handle, but
which the Riemann integral cannot. Later, we will also see that any Riemann inte-
grable function on an interval is Lebesgue integrable and that for such functions,
the two methods give the same result. 2

Alternative and/or shorthand notations for the integral are
∫
X
φ(x)µ(dx),

∫
φdµ

and
∫
φ. The representation of a simple function as a finite linear combination of

characteristic functions is of course not unique, but it is easy to see that different
representations give the same result, so the integral is well-defined. For A ∈ M,
write ∫

A

φdµ :=

∫
X

φχAdµ.

This is well-defined since φχA =
∑n

1 ajχA∩Ej + 0 · χAc is simple. A few basic
facts follow.

Proposition 5.3 Let c ∈ R+ and φ =
∑n

1 ajχEj , ψ =
∑m

1 bjχFj ∈ L+ be simple
functions. Then

(a)
∫
cφ = c

∫
φ,

(b)
∫

(φ+ ψ) =
∫
φ+

∫
ψ,

(c) φ ≤ ψ ⇒
∫
φ ≤

∫
ψ,

(d) The map A→
∫
A
φ, A ∈M, is a measure.

Proof. Part (a) is trivial. For part (b) observe that

φ+ ψ =
∑
i

∑
j

(ai + bj)χEi∩Fj .
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Hence ∫
(φ+ ψ) =

∑
i

∑
j

(ai + bj)µ(Ei ∩ Fj)

=
∑
i

ai
∑
j

µ(Ei ∩ Fj) +
∑
j

bj
∑
i

µ(Ei ∩ Fj)

=
∑
i

aiµ(Ei) +
∑
j

bjµ(Fj) =

∫
φ+

∫
ψ.

For part (c) use the representations φ =
∑

i

∑
j aiχEi ∩ Fj andψ =

∑
i

∑
j bjχEi ∩ Fj .

On each Ei ∩Fj we have ai ≤ bj , so the result follows immediately from the def-
inition.

To prove part (d), it must be shown that if A1, A2, . . . are disjoint sets inM,
then

∫
∪kAk

φ =
∑

k

∫
Ak
φ. We have

∫
∪∞k=1Ak

φ =
n∑
j=1

ajµ

(
Ej ∩

(
∞⋃
k=1

Ak

))
=

n∑
j=1

∞∑
k=1

ajµ(Ej ∩ Ak)

=
∞∑
k=1

n∑
j=1

ajµ(Ej ∩ Ak) =
∞∑
k=1

∫
Ak

φ

where the second equality is countable additivity of µ. 2

The next step is to define integrals of arbitrary functions in L+ by approxi-
mating with simple functions. The following approximation result tells us that it
makes sense to do so.

Theorem 5.4 (a) Let f ∈ L+. There are simple functions φn ∈ L+ such that
φn(x) ↑ f(x) for every x ∈ X .

(b) Let f : X → C be measurable. Then there are simple functions φn such
that |φ1| ≤ |φ2| ≤ . . . ≤ |f | and φn → f pointwise.

Proof. In (a), letAj = {x : f(x) ∈ [j2−n, (j+1)2−n)}, j = 0, . . . , n2n−1 and
let An2n = {x : f(x) ≥ n}. Since f is measurable, all these sets are measurable,
so letting

φn(x) =
n2n∑

0

j2−nχAj(x)
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gives φn’s of the desired form.
For (b), apply the proof of (a) to all four parts of f ; see below for definitions.

2

In the light of Theorem 5.4, we make the following definition.

Definition 5.5 Let f ∈ L+. Then∫
X

f(x)dµ(x) := sup
{∫

X

φ(x)dµ(x) : 0 ≤ φ ≤ f, φ simple
}
.

For A ∈M, ∫
A

fdµ :=

∫
fχAdµ.

It is obvious that if c ∈ R+, then
∫
cf = c

∫
f and if f ≤ g, f, g ∈ L+, then∫

f ≤
∫
g. The next result is one of the key results of integration theory.

Theorem 5.6 (The Monotone Convergence Theorem)
Assume that fn, f ∈ L+ and fn ↑ f pointwise. Then

∫
fndµ ↑

∫
fdµ.

Proof. Since {fn} is increasing, {
∫
fn} is increasing and hence limn

∫
fn

exists (but may be equal to∞). Since fn ≤ f for all n, limn

∫
fn ≤

∫
f .

Now pick an arbitrary simple function φ ∈ L+ such that φ ≤ f and an arbi-
trary a ∈ (0, 1). Since fn ↑ f pointwise, the sets An := {x : fn(x) > aφ(x)} are
increasing in n and

⋃
nAn = X . Since the map A→

∫
A
φ is a measure, it follows

from the continuity of measures that
∫
An
φ ↑

∫
φ. Therefore

lim
n

∫
fn ≥ a lim inf

n

∫
An

φ = a

∫
φ.

Since a was arbitrary, letting a ↑ 1 entails that limn

∫
fn ≥

∫
φ. The result now

follows from the definition of
∫
f . 2

The first consequence of the MCT is that the integral is additive. Indeed, it is
in fact countably additive:

Theorem 5.7 Let fn ∈ L+. Then∫ ( ∞∑
1

fn

)
dµ =

∞∑
1

∫
fndµ.
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Proof. First consider finite additivity. By Theorem 5.4, there are simple non-
negative functions φn and ψn such that φn ↑ f1 and ψn ↑ f2 pointwise. By the
MCT and Proposition 5.3,∫

(f1 + f2) = lim
n

∫
(φn + ψn) = lim

n

∫
φn + lim

n

∫
ψn =

∫
f1 +

∫
f2.

Now finite additivity follows by induction. Since
∑N

1 fn ↑
∑∞

1 fn as N → ∞,
another application of the MCT, together with the finite additivity we just proved,
shows that ∫

(
∞∑
1

fn) = lim
N

∫
(
N∑
1

fn) = lim
N

N∑
1

∫
fn =

∞∑
1

∫
fn.

2

Corollary 5.8 Let f ∈ L+. Then the map A→
∫
A
fdµ, A ∈M , is a measure.

The hypothesis in the MCT is that fn ↑ f pointwise. This can be relaxed a bit;
it suffices to have fn ↑ f a.e. To see this, first observe that if

∫
f = 0, then we

can find simple φn ∈ L+ with φn ↑ f pointwise and
∫
φn = 0. However, since

φn is simple, this trivially means that φn = 0 a.e. Now if x is a point such that
f(x) > 0, then φn(x) > 0 for all sufficiently large n. Hence

µ{x : f(x) > 0} ≤ µ
(⋃

n

{x : φn(x) > 0}
)

= 0.

In summary

Proposition 5.9 Let f ∈ L+. Then
∫
fdµ = 0 if and only if f = 0 a.e.

Suppose now that fn ↑ f a.e. and let E = {x : fn(x) → f(x)}. Then
fnχE ↑ fχE pointwise so by the MCT,

∫
fnχE →

∫
fχE . Since f − fχE ∈ L+

and f − fχE = 0 a.e., Proposition 5.9 implies that
∫
fχE =

∫
f . From the same

argument,
∫
fnχE =

∫
fn. Putting these facts together gives

∫
fn →

∫
f . (This

result is Corollary 2.17 in Folland.)
The MCT states that if fn ∈ L+ and fn ↑ f a.e., then

∫
fn →

∫
f , but

what about when fn → f without being increasing in n? Does this also imply∫
fn →

∫
f? The answer is no, as the following example shows. Let (X,M, µ) =
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([0, 1],L,m) and fn(x) = nχ[0,1/n](x). Then fn → 0 a.e. (but not pointwise,
since fn(0)→∞), but

∫
fn = 1 for every n.

Hence some further assumption is needed to guarantee that fn → f a.e. entails
that

∫
fn →

∫
f . Such a condition will be given in the Dominated Convergence

Theorem below. Before that, we will extend the integral from nonnegative real
functions to general complex functions. First however, we finish the present sec-
tion with the important Fatou’s Lemma and a note on σ-finiteness.

Theorem 5.10 (Fatou’s Lemma) If fn ∈ L+, n = 1, 2, . . ., then∫
(lim inf

n
fn)dµ ≤ lim inf

n

∫
fndµ.

Proof. Note that infn≥m fn is increasing in m, so by the MCT,∫
lim inf fn =

∫
lim
m

( inf
n≥m

fn) = lim
m

∫
inf
n≥m

fn

≤ lim
m

inf
n≥m

∫
fn = lim inf

n

∫
fn

where the inequality follows from that infn≥m fn ≤ fn for every n ≥ m, and
hence

∫
infn≥m ≤

∫
fn, for every m. 2

An immediate consequence of Fatou’s Lemma is that
∫
fdµ ≤ lim infn

∫
fndµ

whenever fn ∈ L+ and fn → f a.e.
The final result of this section makes the observation that if f ∈ L+ and∫
f < ∞, then µ{x : f(x) = ∞} = 0, which is obvious, and that µ can always

be regarded to be σ-finite as far as f is concerned: {x : f(x) > 0} =
⋃
n{x :

f(x) > 1/n} is σ-finite. This is stated in Folland as Proposition 2.20. The last
result extends to the conclusion that

⋃
n{x : fn(x) > 0} is σ-finite whenever∫

fndµ <∞ for all n.

6 Integration of complex functions
Consider a function f : (X,M, µ) → (R,B(R)). Define the two functions f+

and f− by
f+(x) = max(f(x), 0)

and
f−(x) = f+(x)− f(x) = −min(0, f(x)).
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These two nonnegative functions are called the positive part and negative part of
f respectively.

Definition 6.1 A function f : (X,M, µ) → (R,B) is said to be integrable if∫
f+dµ <∞ and

∫
f−dµ <∞. The integral of an integrable function f is given

by ∫
fdµ =

∫
f+dµ−

∫
f−dµ.

A function f : (X,M, µ)→ (C,B) is said to be integrable if <f and =f are both
integrable, and the integral of f is then given by∫

fdµ =

∫
(<f)dµ+ i

∫
(=f)dµ.

The integral of a complex function is well-defined since measurability of f is
equivalent to measurability of its real and imaginary parts, by Corollary 4.11. It is
easy to see that the integral is linear and that f is integrable iff

∫
|f | <∞.

By L1(X,M, µ) we will mean the space of all integrable complex functions
on X . Simplified notations are L1(X), L1(M), L1(µ) or just L1 when these can
be used without risk of confusion. The space L1 is, as we just observed, a complex
vector space.

Proposition 6.2 For any f ∈ L1,∣∣∣ ∫ fdµ
∣∣∣ ≤ ∫ |f |dµ.

Proof. For real-valued f , this is just the ordinary triangle inequality:∣∣∣ ∫ f
∣∣∣ =

∣∣∣ ∫ f+ −
∫
f−
∣∣∣ ≤ ∫ f+ +

∫
f− =

∫
|f |.

For the general case, represent complex numbers z as z = |z|sgnz. Then |
∫
f | =

α
∫
f , where α = sgn(

∫
f). Thus∣∣∣ ∫ f

∣∣∣ =

∫
αf = <

∫
αf =

∫
<(αf)

≤
∫
|<(αf)| ≤

∫
|αf | = |α|

∫
|f | =

∫
|f |.

2
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Proposition 6.3 Let f, g ∈ L1. Then

(a) {x : f(x) 6= 0} is σ-finite,

(b)
∫
E
f =

∫
E
g for all E ∈M iff

∫
|f − g|dµ = 0 iff f = g a.e.

Proof. Part (a) is the corresponding result for nonnegative functions applied
to the four parts of f . We also saw in the previous section that

∫
|f − g| = 0 iff

|f − g| = 0 a.e., so the second equivalence in (b) holds. For the if direction in (b):
if
∫
|f − g| = 0, then for each E ∈M,∣∣∣ ∫

E

f −
∫
E

g
∣∣∣ =

∣∣∣ ∫
E

(f − g)
∣∣∣ ≤ ∫ |f − g| = 0.

For the only if direction: Assume for contradiction that
∫
E

(f − g) = 0 for all
E ∈ M and µ{|f − g| > 0} > 0. Writing f − g = u + iv, we must then have
that at least one of the four parts u+, u−, v+ and v− is nonzero on a set of positive
measure. Assume without loss of generality that this holds for u+, so that with
µ{x : u+(x) > 0} > 0. Then with n sufficiently large and E = {x : u+(x) >
1/n} has µ(E) > 0. Then, since u− = 0 on E,

<
∫
E

(f − g) ≥ 1

n
µ(E) > 0

a contradiction. 2

Remark. In the notation L1 for the space of integrable functions, it is usually
understood that the space is normed with the L1-norm given by

‖f‖1 :=

∫
|f − g|dµ.

There is actually a slight problem with this, since ‖f − g‖1 = 0 only implies
that f = g a.e. and not that f and g are identical functions. This is solved by
defining equivalence classes of integrable functions by saying that f and g belong
to the same equivalence class if they are equal a.e. Then these equivalence classes
are formally taken to be the elements in L1. Then a particular function f is not
really an element of L1, but rather a representative of its equivalence class. This
distinction, however, will not cause any problems in this course.
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Theorem 6.4 (The Dominated Convergence Theorem)
Assume that f1, f2, . . . ∈ L1 and fn → f a.e. Assume also that there exists an

integrable g ∈ L+ such that |fn| ≤ g for every n. Then∫
fndµ→

∫
fdµ.

Strictly speaking, that fn → f a.e. does not imply that f is measurable. If
µ is complete, then measurability of f follows. If not, then at least f will be
measurable after an alternation on a null set. Let us suppress this concern and
simply assume that f is measurable.

Proof. Assume without loss of generality that the fn’s and f are real-valued.
Then g + fn and g − fn are nonnegative by assumption. Hence Fatou’s Lemma
gives on one hand∫

g +

∫
f =

∫
(g + f) ≤ lim inf

n

∫
(g + fn) =

∫
g + lim inf

n

∫
fn

and on the other∫
g −

∫
f =

∫
(g − f) ≤ lim inf

n

∫
(g − fn) =

∫
g − lim sup

n

∫
fn.

2

The DCT allows us to prove that the integral is countably additive under the
right assumption.

Theorem 6.5 Assume that fn ∈ L1 and
∑∞

1

∫
|fn|dµ <∞. Then g :=

∑∞
1 |fn|

is integrable and
∫

(
∑∞

1 fn)dµ =
∑∞

1

∫
fndµ.

Proof. Since ∫
g =

∫ ∞∑
1

|fn| =
∞∑
1

∫
|fn| <∞

by Theorem 5.7, g is integrable and
∑∞

1 |fn(x)| <∞ for a.e. x, so that
∑∞

1 fn(x)

exists for a.e. x. Since
∑N

1 |fn| ≤ g for every N , the DCT implies that∫
(
∞∑
1

fn) = lim
N

∫
(
N∑
1

fn) = lim
N

N∑
1

∫
fn =

∞∑
1

∫
fn.

2

The next result states that the set of simple functions is dense in L1.
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Theorem 6.6 If ε > 0 and f ∈ L1, then there exists a simple function φ =∑m
1 ajχEj , aj ∈ C, such that

‖f − φ‖1 < ε.

If µ is a Lebesgue-Stieltjes measure on R, then the Ej’s can be taken to be open
intervals. Moreover, there exists a continuous function g such that ‖f − g‖1 < ε.

Proof. By Theorem 5.4(b), there are simple functions φk such that φk → f
pointwise and |φk| ≤ |f | for every k. Then |φk − f | ≤ 2|f | so by the DCT,∫

|φk − f | → 0.

Now take φ = φk for sufficiently large k.
Assume now that µ is a Lebesgue-Stieltjes measure and φ as in the statement

of the theorem. We have, if the aj’s are nonzero,

µ(Ej) =
1

|aj|

∫
|φ| ≤ 1

|aj|

∫
|f | <∞.

Hence, by Proposition 3.16, there exists a set Aj which is the finite union of
open intervals, such that µ(Aj∆Ej) < ε/(m|aj|). Let ψ =

∑m
1 ajχAj . Then∫

|φ − ψ| < ε. The final assertion follows from that the characteristic function
χ(a,b) of an open interval can be arbitrarily well approximated by the continuous
function which is 0 outside (a, b), 1 on [a + δ, b − δ] and linear on the remaining
pieces. 2

Consider two measurable spaces (X1,M1) and (X2,M2). For sets E ∈
M1 ×M2, fix x2 ∈ X2 and define the set Ex2 = {x1 ∈ X1 : (x1, x2) ∈ E}. Let
F be the family of sets in E ∈M1 ×M2 such that Ex2 ∈M1. Then F contains
all sets of the form E1 × E2, Ej ∈ Mj , by the definition of product-σ-algebras.
It is also easy to see that F is a σ-algebra. Hence F =M1×M2, i.e. Ex2 ∈M1

for every E ∈ M1 ×M2 and every x2 ∈ X2. A consequence of this is that if
f : X1×X2 → Y is (M1×M2,N )-measurable and we let fx2(x1) = f(x1, x2),
then for B ∈ N , f−1

x2
(B) = f−1(B)x2 ∈ M1, i.e. fx2 is (M1,N )-measurable.

Hence the following statements are well-defined.

Theorem 6.7 Let a, b ∈ R, a < b and let f : X × [a, b] → C be (M ×
B[a, b],B(C))-measurable. Assume that f(·, t) is integrable for each t ∈ [a, b]
and let F (t) =

∫
X
f(x, t)dµ(x).
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(a) If there exists a g ∈ L1(µ) such that |f(x, t)| ≤ g(x) for all (x, t) and
limt→t0 f(x, t) = f(x, t0) for every x, then limt→t0 F (t) = F (t0). Conse-
quently, if f is continuous, then so is F .

(b) If f is partially differentiable w.r.t. t and there exists a g ∈ L1(µ) such that
|(∂f/∂t)(x, t)| ≤ g(x) for all (x, t). Then

F ′(t) =

∫
∂f

∂t
(x, t)dµ(x).

Proof. Pick arbitrary tn converging to t0, let hn(x) = f(x, tn) and h(x) =
f(x, t) and use the DCT on hn and h. This gives (a). For (b), let instead hn(x) =
(f(x, tn)− f(x, t))/(tn − t) and h(x) = (∂f/∂t)(x, t). Then hn → h pointwise
and the result follows on applying the DCT to hn and h; this can be done since
|hn(x)| ≤ supt |(∂f/∂t)(x, t)| ≤ g, by the Mean Value Theorem and the hypoth-
esis. 2

We are now going to see that any Riemann integrable function on a closed
interval [a, b] is also Lebesgue integrable and that the results of the two integrals
are the same. The setting is thus that (X,M, µ) = ([a, b],L,m). Let f be defined
on X and bounded. Let P = {t0, t1, . . . , tn}, a = t0 < t1 < . . . < tn = b, be an
arbitrary finite set of points in [a, b]. Let

mj = mj(P ) = inf
t∈[tj−1,tj ]

f(t), Mj = Mj(P ) = sup
t∈[tj−1,tj ]

f(t),

sPf =
n∑
1

mj(tj − tj−1), SPf =
n∑
1

Mj(tj − tj−1)

and
I(f) = sup

P
sPf, I(f) = inf

P
SPf.

Then f is said to be Riemann integrable if I(f) = I(f) and
∫ b
a
f(x)dx is defined

as the common value of the two.
For a given P , let gP =

∑n
1 mjχ(tj−1,tj ] and GP =

∑n
1 Mjχ(tj−1,tj ]. If f

is Riemann integrable, there are sets Pk such that P1 ⊆ P2 ⊆ . . . and sPk ↑∫ b
a
f(x)dx and SPk ↓

∫ b
a
f(x)dx as k →∞. Since gPk and GPk are increasing and

decreasing respectively, there are limiting functions g and G satisfying g ≤ f ≤
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G. Since gPk and Gpk are obviously Lebesgue measurable, so are g and G. By
the DCT,

∫
gdm =

∫
Gdm =

∫ b
a
f(x)dx, Hence

∫
(G − g)dm = 0, so G = g

a.e. which entails f = G a.e. Since the Lebesgue measure is complete on L, f is
Lebesgue measurable and we get

∫
fdm =

∫ b
a
f(x)dx.

These results are summarized in Folland in Theorem 2.28. The results clearly
extend to improper integrals and to multiple integrals of functions on Rn.

6.1 Expectation
Let (X,M,P) be a probability space and let ξ : (X,M,P)→ (R,B) be a random
variable. If ξ is integrable, then the expectation of ξ is

Eξ :=

∫
X

ξdP.

For A ∈ B, let
Pξ(A) = P{x : ξ(x) ∈ A}.

Then Pξ is a probability measure on B. The next result shows that the expectation
can be computed by integration with respect to Pξ.

Theorem 6.8 (The law of the unconscious statistician) Let h : R → R be a
Borel function and assume that h ◦ ξ is integrable. Then

Eh(ξ) =

∫
R
h(t)dPξ(t).

Proof. Assume first that h = χB for a B ∈ B. Then h ◦ ξ = χB ◦ ξ =
χ{x:ξ(x)∈B}, so

Eh(ξ) = P{ξ ∈ B} = Pξ(B) =

∫
R
χBdPξ.

By linearity of integrals, the result now holds for all simple functions h. By the
MCT, the result then extends to all nonnegative h and finally to all h by linerity.
2

A corresponding result can be shown for measurable functions on any σ-finite
space.
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6.2 Product measures
Let (X1,M1, µ1) and (X2,M2, µ2) be two measure spaces. Recall that

M1 ×M2 = σ(I)

where I = {E1 × E2 : Ej ∈ Mj}. Observe that I is a π-system. Let A be the
family of finite disjoint unions of elements in I. ThenA is an algebra. This is not
immediately clear, but follows from the observation that (E×F )c = (Ec×X2)∪
(X1×F c). Obviously σ(A) =M1×M2. For a given set

⋃n
1 (Ek ×Fk) ∈ A, let

ν
( n⋃

1

(Ek × Fk)
)

=
n∑
1

µ1(Ek)µ2(Fk).

Claim. ν is countably additive on A.
Proof. It suffices to show that if En × Fn, n = 1, 2, . . . are disjoint and⋃

n(En × Fn) = E × F , then ν(E × F ) =
∑

n ν(En × Fn). We do this in
two steps. First fix an arbitrary x2 ∈ X2. Then

µ1(E)χF (x2) = χF (x2)

∫
X1

χE(x1)dµ1(x1) =

∫
X1

χE(x1)χF (x2)dµ1(x1)

=
∑
n

∫
X1

χEn(x1)χFn(x2)dµ1(x1)

=
∑
n

χFn(x2)

∫
X1

χEn(x1)dµ1(x1)

=
∑
n

χFn(x2)µ1(En),

where the second equality follows from the MCT and that χE(x1)χF (x2) =∑
n χEn(x1)χFn(x2). The second step is now the following computation.

µ1(E)µ2(F ) =

∫
X2

µ1(E)χF (x2)dµ2(x2)

=
∑
n

µ1(En)

∫
X2

χFn(x2)dµ2(x2)

=
∑
n

µ1(En)µ2(Fn),

where the second equality is the MCT and step 1. 2
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By Carathéodory’s Extension Theorem, ν extends to a measure µ on M1 ×
M2. The standard notation for this measure is µ = µ1 × µ2.

The construction of the product measure obviously extends to a finite product
of measure spaces. It also works for a countable number of spaces after modifying
the π-system I to I = {

∏n
1 Ei×

∏
i>nXi : n = 1, 2, . . .}. This extension is most

natural when the µi’s are probability measures.
Recalling how a measure is constructed from a countably additive set function

on an algebra via an outer measure, we find that

(µ1 × µ2)(A) = inf{
∞∑
1

µ1(Ej)µ2(Fj) : Ej ∈M1, Fj ∈M2}.

Applying this to the two-dimensional Lebesgue measure, some useful analogs of
approximation results for one-dimensional Lebesque measure follow. Let m be
the two-dimensional Lebesgue measure. Then

m(A) = inf{m(U) : U ⊇ A : U open}
= sup{m(K) : K ⊆ A,K compact}.

This is part (a) of Folland’s Theorem 2.40. We will also need Theorem 2.40(c)
which states that for any set E with m(E) < ∞ and ε > 0, one can find a set A,
which is a finite union of rectangles, such that m(A∆E) < ε. This result is
analogous to Proposition 3.16 as is its proof.

By mimicking the proof of Theorem 6.6 one also gets

Theorem 6.9 If f ∈ L1(R2,L,m) and ε > 0, then there exists a simple function
φ =

∑m
1 ajχRj , where the Rj’s are rectangles, such that∫

|f − φ|dm < ε.

There is also a continuous function g : R2 → R with bounded support, such that∫
|f − g|dm < ε.

Of course, these results extend to Lebesgue measure and Lebesgue measurable
functions on Rn for arbitrary n = 3, 4, 5, . . ..
Example. Construction of a sequence of independent random variables. For
each n = 1, 2, . . ., let (Xn,Mn,Pn) = ([0, 1],L,m) and let ξ : Xn → R be a
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random variable with desired distribution, constructed as in earlier examples. Let
(X,M,P) = (

∏∞
1 Xn,

∏∞
1 Mn,

∏∞
1 Pn) and set ηn(x1, x2, . . .) = ξn(xn). Then,

by the construction of product measure, letting En = {x ∈ Xn : ξn(x) ∈ B} and
Ej = Xj for j 6= n,

P(ηn ∈ B) = P(
∞∏
1

Ej) = Pn(ξn ∈ B).

By the example immediately after Corollary 4.14, the ηn’s are independent. (In
fact, we made precisely this observation in the example following Corollary 4.14.)
2

The next question in focus will be when it is possible to change the order
of integration for a double integral. First, however, some work is required to
establish that the question makes sense. Let (Xj,Mj, µj), j = 1, 2, be finite
measure spaces and let (X,M, µ) be the product space. Let f be a complex- or
R+-valued Borel function on X . The following lemma was proved earlier (right
before the statement of Theorem 6.7).

Lemma 6.10 For every x1 ∈ X1 and x2 ∈ X2, f(·, x2) and f(x1, ·) are M1-
measurable andM2-measurable respectively.

By this lemma, the two functions g : X1 → C and h : X2 → C given by

g(x1) =

∫
X2

f(x1, x2)dµ2(x2)

h(x2) =

∫
X1

f(x1, x2)dµ1(x1)

are well-defined for all f ≥ 0 and all f ∈ L1(X,M, µ).

Lemma 6.11 The functions g and h are measurable.

Proof. By linearity of integrals and the MCT, it suffices to do this for f = χA,
A ∈ M. If A ∈ I, i.e. if A = E × F , E ∈ M1 and F ∈ M2, then g(x1) =
µ2(X2)χE(x1) and hence measurable. Now let D be the family of sets A ∈ M
such that g is measurable for f = χA. With A = X , then g = µ2(X2), a constant
and hence measurable. If An ∈ D and An ↑ A, then A ∈ D by the MCT. If
A,B ∈ D and A ⊆ B, then B \ A ∈ D by linearity of integrals, using that µ2 is
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finite. Hence D is a d-system, so by Dynkin’s Lemma D =M and the result for
g is proved. The proof for h is of course analogous. 2

By this Lemma 6.11, it makes sense to define∫
X1

(∫
X2

f(x1, x2)dµ2(x2)
)
dµ1(x1)

and ∫
X2

(∫
X1

f(x1, x2)dµ1(x1)
)
dµ2(x2)

for f ≥ 0 or f ∈ L1(X,M, µ). However, are they equal? Also, how do they
relate to

∫
X1×X2

fd(µ1 × µ2)?

Theorem 6.12 (Tonelli’s Theorem) If f ∈ L+(X,M, µ), then∫
X

fdµ =

∫
X1

(∫
X2

f(x1, x2)dµ2(x2)
)
dµ1(x1)

=

∫
X2

(∫
X1

f(x1, x2)dµ1(x1)
)
dµ2(x2).

Proof. First let f = χI , for I ∈ I, i.e. I + E × F , E ∈ M1, F ∈ M2.
Then all three expressions are equal to µ1(E)µ2(F ). Let D be the class of sets
A ∈ M such that the theorem holds for f = χA. With A = X , all expressions
are µ1(X1)µ2(X2). The MCT implies that A ∈ D whenever An ∈ D and An ↑ A.
If A ⊆ B and A,B ∈ D, linearity of integrals using that µ1 and µ2 are finite,
gives that B \ A ∈ D. Thus D is a d-system. Hence D =M. Now the full result
follows from linearity of integrals and the MCT. 2

For f ∈ L1(X,M, µ), Tonelli’s Theorem together and linearity of integrals
show:

Theorem 6.13 (Fubini’s Theorem) If f ∈ L1(X,M, µ), then∫
X

fdµ =

∫
X1

(∫
X2

f(x1, x2)dµ2(x2)
)
dµ1(x1)

=

∫
X2

(∫
X1

f(x1, x2)dµ1(x1)
)
dµ2(x2).
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It is very useful to note that in order to check that a given function f is in-
tegrable with respect to the product measure, one can use Tonelli’s Theorem on
|f | to do the integration in the most convenient order and check if the resulting
integral is finite.

By countable additivity, Tonelli’s and Fubini’s Theorem’s extend to σ-finite
measure spaces. However, they do not extend beyond that. Consider for example
X1 = X2 = [0, 1],M1 = M2 = B[0, 1], µ1 = m and µ2 counting measure (i.e.
µ2(F ) is the number of points on F , so that µ2 is infinite for all infinite sets). Note
that µ2 is not σ-finite. Let A be the diagonal, i.e. A = {(x, x) : x ∈ [0, 1]}. (Why
does A ∈ B × B?) Then∫

X1

(∫
X2

χA(x1, x2)dµ2(x2)
)
dµ1(x1) = 1

since the inner integral is constantly 1, whereas∫
X2

(∫
X1

χA(x1, x2)dµ1(x1)
)
dµ2(x2) = 0

since the inner integral is constantly 0 in this case. (Exercise: What is
∫
X
fdµ?)

In Fubini’s Theorem, also the integrability condition is necessary. For an ex-
ample that demonstrates this, letX1 andX2 both be the set of natural numbers and
µ1 and µ2 both counting measure. Let A be the diagonal {(k, k) : k = 1, 2, . . .}
and B the off-diagonal {(k, k + 1), k = 1, 2, . . .}. Letting f = χA − χB, we get∫
X1

∫
X2
fdµ2dµ1 = 0 and

∫
X2

∫
X1
dµ1dµ2 = 1, whereas

∫
X
fdµ is undefined.

7 Signed measures
Let (X,M) be a measurable space and let ν : X → R.

Definition 7.1 The function ν is said to be a signed measure if

• ν(∅) = 0,

• ν assumes at most one of the values∞ and −∞,

• ν(
⋃∞

1 En) =
∑∞

1 ν(En) whenever En ∈ M are disjoint and the sum con-
verges absolutely if ν(

⋃∞
1 En) is finite.
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Sometimes when we speak of a measure in a context where also some signed
measure appears, we will refer to the measure as a positive measure to make the
distinction clear.
Example. If µ1 and µ2 are two measures onM and at least one of them is finite,
then µ1 − µ2 is a signed measure. 2

Example. If f is real-valued andM-measurable and at least one of f+ and f−

is integrable, then

ν(E) =

∫
E

fdµ

defines a signed measure. A function of this kind is called an extended integrable
function. 2

Proposition 7.2 Let ν be a signed measure. If En ↑ E, then ν(En) → ν(E). If
En ↓ E and ν(E1) is finite, then ν(En)→ ν(E).

Proof. Let Fn = En \ En−1 so that the Fn’s are disjoint and E =
⋃∞

1 Fn.
Then, exactly as in the positive measure case,

ν(E) =
∞∑
1

ν(Fn) = lim
N

N∑
1

ν(Fn) = lim
N
ν(EN).

The second part also goes through exactly as for positive measures. 2

7.1 Jordan-Hahn Decompositions
Definition 7.3 Let ν be a signed measure. A set E is said to be a positive set for
ν if ν(F ) ≥ 0 whenever F is measurable and F ⊆ E. A negative set is defined
analogously. If E is both positive and negative for ν, then E is said to be a null
set for ν.

It is obvious from the definition that any subset of a positive/negative set is
positive/negative. It is also clear that the union and the intersection of two posi-
tive/negative sets are positive/negative.

Lemma 7.4 Let P1, P2, . . . be positive sets for the signed measure nu. Then P =⋃∞
1 Pn is also positive.
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Proof. Let Q1 = P1 and Qn = Pn \
⋃n−1

1 Pj , so that the Qn’s are disjoint and⋃∞
1 Qn = P . Then eachQn is positive, so for anyE ⊆ P , ν(E∩Qn) > 0. Hence

ν(E) =
∞∑
1

ν(E ∩Qn) ≥ 0

by countable additivity of ν. 2

The next result states that given a signed measure, the space can be partitioned
into a positive and a negative part, in an essentially unique way.

Theorem 7.5 (The Hahn Decomposition Theorem) Let ν be a signed measure
on (X,M). Then the is a positive set P and a negative set N such that X =
P ∪N . If P ′ and N ′ are two other such sets, then P∆P ′ and N∆N ′ are null for
ν.

Proof. Assume without loss of generality that ν does not assume the value
+∞. Let m = sup{ν(E) : E positive}. Pick a sequence {Pj} of positive sets
such that ν(Pj) → m. Since positivity is closed under finite unions, we may
assume that the Pj’s are increasing. Let P =

⋃∞
1 Pj . By Lemma 7.4, ν(Pj) →

ν(P ), so ν(P ) = m.
LetN = X \P . We claim thatN is negative. Assume for contradiction thatN

is not negative. Observe that there can be no positive subset E of N with ν(E) >
0, since that would imply that P∪E is positive and ν(P∪E) = ν(P )+ν(E) > m,
contradicting the definition of m. Hence there must be an E ⊆ N with ν(E) > 0,
but E not positive. This means that there is an F ⊂ E with ν(F ) < 0. This
implies that ν(E \ F ) > ν(E). Iterating this observation will lead to the desired
contradiction.

Let n1 be the smallest positive integer such that there exists an A1 ⊂ N with
ν(A1) > 1/n1. Pick such an A1. Since A1 is not positive, we can let n2 be
the smallest positive integer such that there exists and A2 ⊂ A1 with ν(A2) >
ν(A1) + 1/n2. Pick such an A2. Since ν(A2) > 0 and A2 ⊂ N , A2 is not
positive. Iterate the procedure to produce smallest possible integers n3, n4, . . . and
A3, A4, . . . with ν(Ak) >

∑k
1 n
−1
j . Let A =

⋂∞
1 An. Recall our assumption that

ν does not take on the value +∞. Consequently ν(A1) < ∞. Hence Proposition
7.2 implies that ν(An)→ ν(A) so that

∞∑
j=1

1

nj
< ν(A) <∞.

48



From this it follows in particular that limj nj = ∞. However A ⊂ N , so A
is not positive. Thus there exists a positive integer n and a B ⊂ A such that
ν(B) > ν(A) + 1/n. Since nj → ∞, nj > n for large enough j. Thus ν(B) >
ν(A) + 1/n > ν(Aj) + 1/n and B ⊂ A ⊂ Aj . This contradicts the choice of nj
as the smallest integer n for which such a B exists.

Finally if P ′ ∪ N ′ is another partition into a positive and a negative set, then
P \ P ′ ⊆ P ∩N ′ and is hence null. Analogously P ′ \ P , N \N ′ and N ′ \N are
null. 2

A partition of the space X into the sets P and N , as in the Hahn Decomposi-
tion Theorem, is called a Hahn decomposition (with respect to ν).

Definition 7.6 If ν1 and ν2 are two signed measures on (X,M), then they are
said to be mutually singular (or just singular) if there exist E,F ∈ M such that
E ∪ F = X , E is null for ν2 and F is null for ν1.

In words, ν1 and ν2 are singular if they live on disjoint parts ofX . When ν1 and
ν2 are singular, this is denoted by ν1 ⊥ ν2. It follows from the Hahn Decompo-
sition Theorem that any signed measure ν can be written as the difference of two
positive measures. These are mutually singular and unique. This is summarized
in the following result.

Theorem 7.7 (The Jordan Decomposition Theorem) Let ν be a signed measure
on (X,M). Then there exist two unique and mutually singular positive measures
ν+ and ν− such that ν = ν+ − ν−.

Proof. Let X = P ∪N be a Hahn decomposition with respect to ν and let

ν+(E) = ν(E ∩ P )

ν−(E) = −ν(E ∩N),

E ∈ M. Then ν+ and ν− are positive, singular and ν = ν+ − ν−. It remains to
prove uniqueness. Assume that ν can also be written as ν = µ+−µ− for two other
positive singular measures µ+ and µ−. Then there are disjoint sets E,F ∈ M
such that E ∪ F = X and µ+(F ) = µ−(E) = 0. Hence E ∪ F is another Hahn
decomposition of X and hence P∆E is null for ν. Therefore, for any A ∈M,

µ+(A) = µ+(A ∩ E) = ν(A ∩ E) = ν(A ∩ P ) = ν+(A).
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Thus µ+ = ν+ and analogously µ− = ν−. 2

A decomposition of a signed measure in this way is called a Jordan decom-
position or a Jordan-Hahn decomposition. The measures ν+ and ν− are called
the positive variation of ν and the negative variation of ν respectively. The total
variation of µ is the measure |ν| := ν+ + ν−. The integral with respect to the
signed measure ν is given by∫

fdν =

∫
fdν+ −

∫
fdν−, f ∈ L1(|ν|).

We say that ν is finite if |ν| is finite and we say that ν is σ-finite if |ν| is σ-finite.

7.2 The Lebesgue-Radon-Nikodym Theorem
Let ν be a signed measure and µ a positive measure on (X,M).

Definition 7.8 If ν(E) = 0 whenever E ∈M and µ(E) = 0, then ν is said to be
absolutely continuous with respect to µ, denoted ν � µ.

Immediate consequences of the definition are that ν � µ iff (ν+ � µ and
ν− � µ) iff |ν| � µ and that (ν � µ and ν ⊥ µ) iff ν = 0.
Example. Let ξ : (X,M,P) → (R,B(R)) be a random variable. Recall the
measure Pξ on B given by Pξ(B) = P{ξ ∈ B}. If Pξ � m, then ξ is said to be a
continuous random variable. 2

The classical Radon-Nikodym Theorem states that whenever ν � µ, there
exists anM-measurable function f such that

ν(E) =

∫
E

fdµ, E ∈M,

provided that µ and ν are σ-finite. The Lebesgue-Radon-Nikodym Theorem
(LRNT) provides even more information. Before that, a preparatory lemma is
required.

Lemma 7.9 Assume that ν and µ are two finite measures on (X,M). Then either
ν ⊥ µ or there exists ε > 0 and E ∈M such that µ(E) > 0 and E is positive for
ν − εµ.
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Proof. Let Pn∪Nn be a Hahn decomposition for ν−n−1µ, n = 1, 2, . . .. Write
P =

⋃
n Pn and N =

⋂
nNn, so that Pn ↑ P and Nn ↓ N . Since N is negative

for ν − n−1µ, ν(N) ≤ n−1µ(N) for all n and since µ is finite, this implies that
ν(N) = 0. If µ(P ) = 0, then µ ⊥ ν. If µ(P ) > 0, then µ(Pk) > 0 for some k by
continuity of measures. Now take E = Pk and ε = 1/k. 2

Theorem 7.10 (The Lebesge-Radon-Nikodym Theorem) Let ν be a signed mea-
sure and µ a positive measure on (X,M), both σ-finite. Then

(a) there exist unique σ-finite signed measures λ and ρ such that

λ ⊥ µ, ρ� µ, ν = λ+ ρ

(b) there exists an extended µ-integrable function f such that

ρ(E) =

∫
E

fdµ

for all E ∈M. If g is another such function, then f = g µ-a.e.

Proof. We do this for ν, µ finite positive measures; the extensions are straight-
forward. The uniqueness parts are left for exercises (or reading in Folland).

LetF be the set ofM-measurable nonnegative functions f such that
∫
E
fdµ ≤

ν(E) for all E ∈ M. Then F is nonempty (since at least 0 ∈ F) and F is closed
under finite maxima, since if f, g ∈ F , then∫

E

f ∨ g dµ =

∫
E∩A

fdµ+

∫
E∩Ac

gdµ ≤ ν(E ∩ A) + ν(E ∩ Ac) = ν(A)

where A = {x : f(x) ≥ g(x)}. Let a = sup{
∫
fdµ : f ∈ F}. Note that a ≤

ν(X) < ∞. Pick fn ∈ F such that
∫
fndµ → a. Letting gn = max(f1, . . . , fn)

we get that gn ↑ g := supn fn pointwise, so that the MCT implies that∫
gdµ = lim

n

∫
gndµ = a.

The MCT, applied to gnχE for each E ∈ M, also implies that g ∈ F . Hence the
set function λ defined by

λ(E) = ν(E)−
∫
E

gdµ
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is a positive measure. Set ρ(E) =
∫
E
gdµ. Then we are done if we can prove that

λ and µ are singular. If not, Lemma 7.9 implies that we can find E with µ(E) > 0
and ε > 0 such that λ ≥ εµ on E. However then for any F ∈M,∫

F

(g + εχE)dµ =

∫
F

gdµ+ εµ(F ∩ E) ≤
∫
F

gdµ+ λ(F ) = ν(F ),

i.e. g + εχE ∈ F , a contradiction, since
∫

(g + εχE)dµ = a+ εµ(E) > a. 2

Writing ν = λ+ρwith λ ⊥ µ and ρ� µ is called the Lebesgue decomposition
of ν.

In case ν � µ, the LRNT gives states that ν(E) =
∫
E
fdµ for all E ∈ M,

i.e. the Radon-Nikodym Theorem. It is common to write f = dν/dµ, the reason
of course being that the notation in itself suggests the property that defines the
function f , namely that

∫
E

(dν/dµ)dµ =
∫
E
dν for all E. ”Multiplying” by dµ,

one also writes dν = fdµ. The function dν/dµ is called the Radon-Nikodym
derivative of ν with respect to µ.

Note that the LRNT works fine even if it is assumed µ is a signed measure;
just Jordan decompose µ and use the LRNT on µ+ and µ−.

The most important applications of the LRNT are the Fundamental Theorem
of Calculus and the Integration by Parts formula for Lebesgue integrals. We will
come back to those shortly. Another fundamental application is the concept of
conditional expectation in probability theory.
Example. (Conditional Expectation) Let f ∈ L1(X,M, µ), µ σ-finite. Define
ν(E) =

∫
E
fdµ, E ∈ M. Then ν is a finite signed measure such that ν � µ.

Now letN be a sub-σ-algebra ofM. Then obviously ν|N � µ|N . By the LRNT,
this entails that there exists a function g ∈ L1(X,N , µ|N ) such that

ν(E) =

∫
E

gdµ

for all E ∈ N , i.e. ∫
E

fdµ =

∫
E

gdµ

for allE ∈ N . This provides the base for the definition of conditional expectation,
as follows.

Let (X,M,P) be a probability space and ξ and η integrable random variables.
We would like to find a sensible, proper definition of the conditional expectation
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E[ξ|η]. Clearly, writing ψ = E[ξ|η], ψ should be a random variable which is a
function of η. In other words, ψ should be a σ(η)-measurable function. Now, it
is intuitively fairly clear that the conditional expectation of ξ given an event A
should satisfy

E[ξ|A] =
E[ξχA]

P(A)
=

∫
A
ξdP

P(A)

for any A such that P(A) > 0. Since E[E[ξ|η]|η ∈ B] should equal E[ξ|η ∈ B]
for B ∈ B(R), we get have on multiplying with P(η ∈ B),∫

{η∈B}
E[ξ|η]dP =

∫
{η∈B}

ξdP

for all B ∈ B, i.e. ∫
A

E[ξ|η]dP =

∫
A

ξdP

for all A ∈ σ(η). This is the criterion that is used for the formal definition of the
conditional expectation of a random variable given a sub-ξ-algebra.

Definition 7.11 Let N be a sub-σ-algebra of M and ξ an integrable random
variable. Then ψ is said to be (a version of) a conditional expectation of ξ given
N if ψ is N -measurable and ∫

A

ψdP =

∫
A

ξdP

for allA ∈ N . If η is another random variable, then E[ξ|η] is defined as E[ξ|σ(η)].

By the above observations, the existence of such a ψ follows from the LRNT.
Note that two versions of the conditional expectation must be equal a.s. (exercise).
2

Here are a few more results on the validity of the dν/dµ-notation.

Proposition 7.12 Assume that µ, ν and λ are σ-finite measures, ν � µ and
µ� λ.

(a) If g ∈ L1(ν), then g(dν/dµ) ∈ L1(µ) and∫
gdν =

∫
g
dν

dµ
dµ.
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(b)
dν

dλ
=
dν

dµ

dµ

dλ

λ-a.e.

Proof.

(a) If g = χE , E ∈M, then∫
g
dν

dµ
dµ =

∫
E

dν

dµ
dµ = ν(E) =

∫
E

dν =

∫
gdν.

Now use linearity of the integrals prove the result for simple functions, then
the MCT for nonnegative functions and then linearity again for general g.

(b) Pick E ∈M arbitrarily, let g = χE(dν/dµ) and plug this into (a), letting µ
and λ play the rôle of ν and µ respectively. Doing so gives∫

E

dν

dµ

dµ

dλ
dλ =

∫
E

dν

dµ
dµ = ν(E) =

∫
E

dν

dλ
dλ,

where the first equality is by (a) and the other two by definition. By Propo-
sition 6.3, this proves (b).

2

Example. If ν � µ and µ � ν, then (dν/dµ)(dµ/dν) = 1 almost everywhere
with respect to any of the two measures. 2

7.3 Complex measures
Let (X,M) be a measurable space. A set function ν : M → C is said to be a
complex measure if it can be written as

ν = νr + iνi

where νr and νi are finite signed measures. We let L1(ν) = L1(νr) ∩ L1(νi) and
for f ∈ L1(ν), we define∫

fdν =

∫
fdνr + i

∫
fdνi.
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For two complex measures ν and µ, we write ν ⊥ µ if νj ⊥ µk for all four
combinations of i, j ∈ {r, i}. If µ is a positive measure, we write ν � µ if
νr � µ and νi � µ. The Lebesgue-Radon-Nikodym Theorem now goes through
unchanged if the signed measure ν is replaced with a complex measure.

The total variation of the complex measure ν is given by

|ν|(E) = sup{
∞∑
1

|ν(Fn)| : F1, F2, . . . disjoint and
∞⋃
1

Fn = E}.

It is fairly easy to show that |ν| is a finite measure. It is obvious that ν � |ν| and
that for positive measures we have ν � µ iff |ν| � µ.

Proposition 7.13 Let f = dν/d|ν|. Then |f | = 1 |ν|-a.e.

Proof. On one hand∣∣∣ ∫
E

fd|ν|
∣∣∣ = |ν(E)| ≤ |ν|(E) =

∫
E

1d|ν|

for all E ∈ M, so |f | ≤ 1 a.e. On the other hand, if |f | < 1 on a set of positive
measure, then by continuity of measures and separability of C, there must be an
n ∈ N and a z ∈ C with |z| < 1− 2/n such that f ∈ B1/n(z) on a set of positive
measure. Let E = {x : f(x) ∈ B1/n(z)} for such n and z. Then for all F ⊆ E,

|ν(F )| =
∣∣∣ ∫

F

fd|ν|
∣∣∣ ≤ ∫

F

|f |d|ν| ≤ (1− 1

n
)|ν|(F ).

Hence for all disjoint F1, F2, . . . whose union is E, we get
∞∑
1

|ν(Fn)| ≤ (1− 1

n
)|ν|(E),

contradicting the definition of |ν|. 2

A few immediate consequences of the definition of the total variation and the
above proposition conclude this section.

• If f = dµ/d|µ|, then
∫
E
|f |d|µ| = |µ|(E) for all E ∈ M. More generally,

if ν � µ for a positive measure µ and f = dν/dµ, then |f | = d|ν|/dµ
µ-a.e.

• If ν1 and ν2 are two complex measures, then |ν1 + ν2| ≤ |ν1|+ |ν2|.
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7.4 Differentiation in Rn

In this section, we are going to have (X,M, µ) = (Rn,B(Rn),m) for some n =
1, 2, . . . throughout.

Suppose that ν is a σ-finite signed measure satisfying ν � m. By the Radon-
Nikodym Theorem, f = dν/dm exists and satisfies∫

E

f(x)dx = ν(E)

for all E ∈ B.
Let

F (x) = lim
r→0

ν(Br(x))

m(Br(x))
= lim

r→0

∫
Br(x))

f(t)dt

m(Br(x))
,

provided that the limit exists, i.e. F is the limit of the average value of f onBr(x),
when it exists. Intuitively, one would expect that F = f a.e. Is this true? This
question will be the focus of our attention in this section. Define

Arf(x) =

∫
Br(x))

f(t)dt

m(Br(x))
,

so that F (x) = limr→0Arf(x) when f = dν/dm. We define Arf(x) for
all functions f for which the definition makes sense, i.e. for f ∈ L1

loc where
L1
loc is the space of all locally integrable functions, i.e. all functions g for which∫
K
|g(x)|dx < ∞ for all compact K. (Note that L1

loc is precisely the space of
functions g for which ν(E) =

∫
E
g(x)dx defines a σ-finite measure.)

Lemma 7.14 Let C be a family of open balls in Rn and let U be the union of all
the sets in C. Then, for any c < m(U), there are disjoint sets B1, . . . , Bk ∈ C such
that

∑k
1 m(Bj) > 3−nc.

Proof. Since m is inner regular, there exists a compact set K ⊂ U such that
m(K) > c. Since C is an open cover of K, there are A1, . . . , Al ∈ C such that⋃l

1Aj ⊃ K. Let B1 be the largest of the Aj’s (in terms of radius; if there is more
than one ball with the largest radius, then choose arbitrarily). Next let B2 be the
largest of the remaing Aj’s that does not intersect B1. Then let B3 be the largest
of the now remaining Aj that does not intersect B1 or B2. Keep on doing this
recursively until no Aj remains that does not intersect any of the chosen Bj’s. Let
k be the index of the last Bj chosen by this procedure.

56



Suppose thatAi is one of theAj’s that was not chosen. Then there is a smallest
index j such that Ai ∩Bj 6= ∅. We must then have that the radius of Ai is at most
as large as the radius of Bj , since otherwise Ai would itself have been chosen at
step j or earlier. This means that Ai ⊆ B∗j , where B∗j is the ball centered at the
same point as Bj and with three times the radius of Bj .

Repeating this argument for all Aj’s that were not chosen shows that K ⊂⋃k
1 B
∗
j . Since m(B∗j ) = 3nm(Bj) we get

c < m(K) <
k∑
1

m(B∗j ) = 3n
k∑
1

m(Bj).

2

Lemma 7.15 The function Arf(x) is continuous in r and x.

Proof. Let c = m(B1(0)) so that m(Br(x)) = crn. Hence

Arf(x) = c−1r−n
∫
Br(x)

f(t)dt,

so that it suffices to check that
∫
Br(x)

f(t)dt is continuous in (x, r). If (x, r) →
(x0, r0), then χBr(x) → χBr0 (x0) pointwise, except on a subset of the boundary
of Br0(x0), a null-set. Also, for x close enough to x0, all these characteristic
functions are bounded by χBr0+1(x0) which is an integrable function. Since f is
locally integrable, it now follows from the DCT that∫

Br(x)

f(t)dt→
∫
Br0 (x0)

f(t)dt

as desired. 2

Next we define the Hardy-Littlewood maximal function, Hf(x).

Definition 7.16 For f ∈ L1, let

Hf(x) = sup
r>0

Ar|f |(x), x ∈ Rn.

57



Theorem 7.17 (The Maximal Theorem) For f ∈ L1 and a > 0, let Ef
a = {x ∈

Rn : Hf(x) > a}. Then, for all f and a,

m(Ef
a ) ≤ 3n

a

∫
|f(t)|dt.

Proof. Fix f and a. If Ef
a = ∅, the result is trivial, so assume otherwise. Then,

for each x ∈ Ef
a , pick rx > 0 so that Arx|f |(x) > a. By Lemma 7.14, we can

find x1, . . . , xk ∈ Ef
a so that the Bj := Brxj

(xj)’s are disjoint and
∑k

1 m(Bj) >

3−nm(Ef
a ). However∫

Bj

|f(t)|dt = m(Bj)Arxj |f |(xj) > am(Bj)

so

3−nm(Ef
a ) <

k∑
1

m(Bj) <
1

a

k∑
1

∫
Bj

|f(t)|dt ≤ 1

a

∫
|f(t)|dt.

2

We are now ready to show that the limit as r → 0 of Arf(x) is indeed f(x)
for any locally integrable f .

Theorem 7.18 If f ∈ L1
loc, then for a.e. x ∈ Rn,

lim
r→0

Arf(x) = f(x).

Proof. It suffices to prove the result for F ∈ [−N,N ]n for arbitrarily fixed N
and hence we may assume without loss of generality that f ∈ L1. Then, for any
ε > 0 by Theorem 6.9, there exists a continuous integrable function g such that∫

|f(t)− g(t)|dt < ε.

Since g is continuous, there is for each x and each δ > 0, an r > 0 such that
|g(t)− g(x)| < δ whenever |t− x| < r. For such an r we have

|Arg(x)− g(x)| =
|
∫
Br(x)

(g(t)− g(x))dt|
m(Br(x))

< δ.
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Hence Arg(x)→ g(x) as r → 0. From this, it follows that

lim sup
r→0

|Arf(x)− f(x)| ≤ lim sup
r→0

∣∣∣Ar(f(x)− g(x))

+ (Arg(x)− g(x)) + (g(x)− f(x))
∣∣∣

≤ H(f − g)(x) + |f − g|(x),

by the triangle inequality and that the middle term of the second expression van-
ishes by the above. For a > 0, let Ea = {x : lim supr→0 |Arf(x) − f(x)| > a}.
We want to show that m(Ea) = 0 for every a. Let Fa = {x : |f(x)− g(x)| > a}.
By the above inequality,

Ea ⊆ Fa/2 ∪ {x : H(f − g)(x) > a/2}.

By the Maximal Theorem, the measure of the second set on the right hand side is
bounded by 2·3n

a

∫
|f(t)− g(t)|dt < 2·3n

a
ε. Also, by Markov’s inequality,

m(Fa) ≤
2

a

∫
|f(t)− g(t)|dt < 2

a
ε.

Hence m(Ea) < (2(1 + 3n)/a)ε and since ε was arbitrary, we are done. 2

In fact, also the following slightly stronger statement holds (but note that it
does not follow directly from Theorem 7.18):

lim
r→0

1

m(Br(x))

∫
Br(x)

|f(t)− f(x)|dt = 0.

The result can be generalized a bit further by replacing the balls Br(x) by more
general sets. A family of sets {Er}r>0 is said to shrink nicely (or Er shrinks
nicely) to x if Er ⊆ Br(x) for all r and there is an a > 0, independent of r, such
that m(Er) > am(Br(x)) for all r. It is now easy to see that

lim
r→0

1

m(Er)

∫
Er

|f(t)− f(x)| = 0

whenever Er shrinks nicely to x. As a special case of this, consider a signed
measure ν on B(Rn) such that |ν|(K) < ∞ for all compact K and ν � m.
Letting f = dν/dm, we get that f ∈ L1

loc and hence

lim
r→0

ν(Er)

m(Er)
= f(x) (4)
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for almost every x, whenever Er shrinks nicely to x. In fact, with the right for-
mulation, this holds even if ν is not absolutely continuous w.r.t. m. (In Folland’s
book this is stated under the extra condition that ν be regular, i.e. that |ν| is finite
on all compact sets and |ν|(E) is the infimum of |ν|(U) over all open supersets
U . However, it is a fact, beyond the scope of this text, that all finite measures on
B(R) are regular.) By the LRNT, one can write

ν(E) = λ+ ρ = λ(E) +

∫
E

f(x)dx, E ∈ B(Rn)

where λ ⊥ m, ρ << m and f = dρ/dm. Using that λ lives on a space of m-
measure 0, one can show that (4) still holds. (Then, of course, if x is a point for
which λ{x} > 0, this point must belong to the exceptional null-set where (4) is
false.)

Theorem 7.19 Let F : R→ R be nondecreasing and right continuous. Then the
set of points where F is not continuous is countable and F is differentiable a.e.

Proof. Since∑
x∈[−N,N ]

(F (x+)− F (x−)) = F (N)− F (−N) <∞,

the first assertion follows. Since F (x+ h)− F (x) equals µF (x, x+ h] for h > 0
and −µF (x + h, x] for h < 0 and the sets (x, x + h] and (x + h, x] shrink nicely
to x, the second statement now follows from (4). 2

7.5 Bounded variation
In this section, we will investigate find the precise conditions for and the proofs
of two profoundly essential results in calculus, namely the Fundamental Theorem
of Calculus and the Integration by Parts Theorem. Let F : R→ C.

Definition 7.20 The total variation of F , denoted TF is the function given by

TF (x) = sup{
n∑
1

|F (xj)− F (xj−1)| : n ∈ N,−∞ < x0 < x1 < . . . < xn = x}.
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Note that adding an extra xj on the right hand side of the definition of TF only
serves to increase

∑
j |F (xj)−F (xj−1| for that particular set of xj’s. This means

that when estimating TF (b) we may always assume that a given point a < b is one
of the xj’s if that is helpful. One consequence is that

TF (b)−TF (a) = sup{
n∑
1

|F (xj)−F (xj−1)| : n ∈ N, a = x0 < x1 < . . . < xn = x}.

If limx→∞ TF (x) < ∞,we say that F is of bounded variation. Let BV denote
the space of functions F : R → C of bounded variation. By BV [a, b], we denote
space of F ’s defined on [a, b] for which TF (b) − TF (a) < ∞. A function in
BV [a, b] is said to be of bounded variation on [a, b]. Here a few observations.

• If F ∈ BV , then the restriction to [a, b] of F is in BV [a, b].

• If F ∈ BV [a, b], then the extension of F given by F (x) = F (a) for x < a
and F (x) = F (b) for x > b, is in BV .

• BV is a complex vector space.

• If F is differentiable and F ′ is bounded, then by the Mean Value Theorem,
TF (b) − TF (a) ≤ (b − a) supt F

′(t) < ∞, and hence F ∈ BV [a, b] for all
−∞ < a < b <∞.

Lemma 7.21 If F is real-valued and F ∈ BV , then TF − F and TF + F are
nondecreasing.

Proof. Pick y arbitrarily, pick ε > 0 and pick x < y. Pick x0 < x1 < . . . <
xn = x so that

∑n
1 |F (xj)− F (xj−1)| > TF (x)− ε. Then

TF (y) + F (y) ≥
n∑
1

|F (xj)− F (xj−1)|+ |F (y)− F (x)|+ F (y)

≥
n∑
1

|F (xj)− F (xj−1)|+ F (x)

> TF (x)− ε+ F (x)

Since ε was arbitrary, it follows that TF + F is nondecreasing. The other part is
analogous. 2
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Theorem 7.22 (a) F ∈ BV iff <F,=F ∈ BV ,

(b) A real-valued function F is in BV iff F can be written as the difference
between two bounded nondecreasing functions.

(c) If F ∈ BV is real-valued, then F (x+) and F (x−) exist for all x and
F (±∞) both exists.

(d) If F ∈ BV , then the set of points where F is discontinuous is countable.

(e) If F ∈ BV is real-valued and right continuous, then F is differentiable a.e.

Proof. Parts (c), (d) and (e) follow from (a), (b) and Theorem 7.19, so it
suffices to prove (a) and (b). Part (a) is obvious, so it remains to prove (b). The
if-direction is obvious. For the only if-direction, write

F =
1

2
(TF + F ) +

1

2
(TF − F ),

which is by Lemma 7.21 the difference of two increasing functions, which are
bounded since F ∈ BV . 2

Let F ∈ BV . If F is real-valued, then writing, as in (b) of the above Theorem,
F = F1 − F2, where F1 and F2 are nondecreasing and bounded is called to de-
compose F in its positive and negative variations. If f is complex-valued, we can
write F = F1−F2 + i(G1−G2), where the Fi’s and Gis are the positive/negative
variations of <F and =F respectively.

Denote by NBV the space of F ∈ BV such that F (−∞) = 0 and F is
right continuous. For an F ∈ NBV , the functions F1, F2, G1 and G2 are all
right continuous. Hence we can define the complex measure µF given by µF =
µF1 − µF2 + i(µG1 − µG2).

Proposition 7.23 If F ∈ NBV , then F ′ ∈ L1(m). Moreover µF ⊥ m iff F ′ = 0
a.e. and µF � m iff F (x) =

∫ x
−∞ F

′(t)dt

Note. Theorem 7.22(e) guarantees that F ′(x) exists for almost every x, so the
present proposition should be read with the understanding that F ′ is extended by
defining it arbitrarily on the exceptional null-set.
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Proof. By the definition of derivative, F ′(x) = limr→0(µF (Er)/m(Er)),
where Er = (x, x + r] for r > 0 and Er = (x + r, x) for r < 0. By the ob-
servations following Theorem 7.18, F ′(x) = dµF/dm a.e. By the LRNT, this
entails that

F (x) = λ(−∞, x] +

∫ x

−∞
F ′(t)dt

where λ ⊥ m and F ′ must be in L1(m) since F must be bounded by virtue of
being of bounded variation. 2

One part of Proposition 7.23 is that the Fundamental Theorem of Calculus
holds for F ∈ NBV defined on the whole real line, such that µF � m. Can
the latter criterion be stated in a way which is in a more direct way in terms of F
itself? The answer is yes:

Definition 7.24 A function F : R → C is said to be absolutely continuous if
for all ε > 0 there exists a δ > 0 such that

∑n
1 |F (bj) − F (aj)| < ε whenever

a1 < b1 < a2 < . . . , bn and
∑n

1 (bj − aj) < δ.

Note that absolute continuity is stronger than uniform continuity (and thus
stronger than continuity), since uniform continuity follows from taking n = 1 in
the definition of absolute continuity. We say that F is absolutely continuous on
[a, b] if it satisfies the definition restricted to a ≤ aj, bj ≤ b.
Example. If F is differentiable everywhere and F ′ is bounded, then by the Mean
Value Theorem, |F (bj) − F (aj)| ≤ maxx F

′(x)(bj − aj) for any aj, bj , so F is
absolutely continuous. 2

Proposition 7.25 If F ∈ NBV , then F is absolutely continuous iff µF � m.

Proof. If µF � m, then we claim that for each ε > 0 there is a δ > 0
such that |µF |(E) < ε whenever m(E) < δ. It suffices to prove the claim for
positive µF . Suppose for contradiction the there are Ek such that m(Ek) < 2−k

but µF (Ek) ≥ ε. By Borel-Cantelli, m(lim supk Ek) = 0. However, for each n,
µF (∪∞n Ek) ≥ ε. Since F ∈ NBV , µF is finite, so it follows from continuity of
measures that µF (lim supk Ek) ≥ ε, contradicting that µF � m.

For the only-if direction, pick E so that m(E) = 0, pick ε > 0 and a corre-
sponding δ according to the definition of absolute continuity. By outer regularity
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of m and µF there are open sets U1 ⊇ U2 ⊇ . . . ⊇ E such that m(U1) < δ and
µF (Uj) ↓ µF (E). Each Uj can be written as a countable union of intervals:

Uj =
⋃
k

(akj , b
k
j ).

It follows from the absolute continuity of F , since
∑

k(b
k
j − akj ) < δ for each j,

that

|µF (Uj)| ≤ lim
n

n∑
k=1

|µF (akj , b
k
j )|

= lim
n

n∑
k=1

|F (bkj )− F (akj )| ≤ ε.

Hence µF (E) = 0, proving that µF � m. 2

Remark. It may come as a surprise that continuity of F is not sufficient for
µF � m. However, consider the Cantor set C on [0, 1]. As in Section 2, represent
each number x ∈ [0, 1] by its trinary expansion

x =
∞∑
1

an(x)3−n,

an(x) ∈ {0, 1, 2}. For x ∈ C, let bn(x) = an(x)/2 (recall that an(x) ∈ {0, 2}
whenever x ∈ C). Let F (x) =

∑∞
1 bn(x)2−n. Extend F to a function on [0, 1] by

letting F (x) = sup{F (c) : c ∈ C, c ≤ x}. Then F is a.e. constant, in the sense
that for any x 6∈ C, there is an open interval containing x on which F is constant.
Nevertheless, F (0) = 0 and F (1) = 1. Since F is increasing and F [0, 1] = [0, 1],
F is continuous. The measure µF however, is concentrated on C. Thus µF ⊥ m,
despite F being continuous. The function F is known as the Cantor function.

So, by Proposition 7.23, for functions F ∈ NBV , absolute continuity of F
implies that F (x) =

∫ x
−∞ F

′(t)dt. For F defined on an interval [a, b] (or F (x) =
F (a), x < a and F (x) = F (b), x > b, things are even a bit better.

Lemma 7.26 If F is absolutely continuous on [a, b], then F ∈ BV [a, b].
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Proof. Take ε = 1 in the definition of absolute continuity of F and pick δ
accordingly. LetN = b(b−a)/δc+1. For any given a = x0 < x1 < . . . < xn = b,
group the intervals (xj−1, xj] intoN groups such that the total length of each group
is less than δ; this can be done by the choice of δ, at least after adding some extra
xj’s. Hence the sum of the |F (xj)− F (xj−1)|’s over each group is bounded by 1,
so

n∑
1

|F (xj)− F (xj−1)| ≤ N.

Since the xj’s were arbitrary, this shows that TF (b) ≤ N , in particular F ∈
BV [a, b]. 2

Summing up, we get

Theorem 7.27 (The Fundamental Theorem of Calculus) Let −∞ < a < b <
∞. Then F : [a, b] → C is absolutely continuous iff F ∈ BV [a, b], F is differen-
tiable a.e., F ′ ∈ L1([a, b],L,m) and

F (x) =

∫ x

a

F ′(t)dt

for every x ∈ [a, b].

Next we consider integration by parts. For F ∈ NBV , write
∫
E
fdF for∫

E
fdµF .

Theorem 7.28 (Integration by Parts) Let F,G ∈ NBV and assume that G is
continuous. Let −∞ < a < b <∞. Then∫

(a,b]

FdG+

∫
(a,b]

GdF = F (b)G(b)− F (a)G(a).

Proof. By Theorem 7.22 parts (a) and (b), it suffices to do this for F and G
increasing. Let Ω = {(x, y) : a < x ≤ y ≤ b}. By Tonelli, we have on one hand
that

(µF × µG)(Ω) =

∫
(a,b]

∫
(a,y]

dF (x)dG(y)

=

∫
(a,b]

(F (y)− F (a))dG(y)

=

∫
(a,b]

FdG− F (a)(G(b)−G(a)).
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and on the other hand

(µF × µG)(Ω) =

∫
(a,b]

∫
[x,b]

dG(y)dF (x)

=

∫
(a,b]

(G(b)−G(x))dF (x)

= G(b)(F (b)− F (a))−
∫

(a,b]

GdF

where the second equality requires that G is continuous. Equating the two expres-
sions gives the result. 2

8 The law of large numbers
This section is devoted to proving the strong version of the Law of Large Numbers.
Of course, there is a probability space (X,M,P) underlying all statements made.
We begin with a fundamental observation.

Proposition 8.1 Let ξ and η be independent integrable random variables. Then

E[ξη] = E[ξ]E[η].

Proof. If ξ and η are simple functions, then the result follows directly from
the definition of independence and easy algebraic manipulation. If ξ and η are
positive, then let sequences of simple functions increase to ξ and η respectively.
Choose the sequences so that the simple functions are σ(ξ)- and σ(η)-measurable
respectively (which is what one gets if one uses the basic construction of such
simple functions). Then all functions of the first sequence are independent of
all functions of the second sequence, by being functions of independent random
variables. The result now follows for positive functions. Finally the general result
follows from linearity of integrals. 2

The weak Law of Large Numbers is very easy to prove and goes as follows.
Here and in the sequel the abbreviation ”iid” stands for ”independent and identi-
cally distributed”. Also, for a sequence of real numbers x1, x2, . . ., the quantity
xn denotes the average of the first n xj:s, i.e. xn = n−1

∑n
1 xj .
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Theorem 8.2 (Weak Law of Large Numbers) Assume that ξ1, ξ2, . . . are iid ran-
dom variables such that E[ξ1] = 0 and E[ξ2

1 ] = M2 <∞. Then for any ε > 0,

lim
n

P(|ξn| > ε) = 0.

Proof. By the above proposition, E[ξ
2

n] = n−1E[ξ2
1 ]. Hence, by Markov’s

inequality,

P(|ξn| > ε) = P(ξ
2

n > ε2) ≤ M2

nε2
,

which tends to 0 as n→∞. 2

Obviously, if E[ξ1] = v 6= 0, then applying the result to ξj − v gives that
P(|ξn − v| > ε) → 0. The strong law will make away with the assumption of
finite second moment and also prove that ξn → 0 a.s., which is clearly a stronger
result in both aspects. As for the weak law, it is obviously sufficient to consider
the case E[ξ1] = 0.

The strong law has a reputation of having a very involved proof. This is not
entirely correct. Granted, compared to the weak law it is involved, but compared
to other fundamental mathematical results it is certainly not. Here we will present
the ”elementary proof”; the other standard proof uses martingale theory, which is
not a topic of this course.

Let us begin with a short and elegant proof of a.s. convergence under the as-
sumption of bounded fourth moment. The proof of the full strong law does not
rely on this result, so we may regard it as a side track. On the other hand, it is
more general in that it does not assume iid random variables, only that they are
independent and have the same expectation.

Theorem 8.3 (Law of Large Number under Bounded 4’th Moment (LLN(4)))
Let ξ1, ξ2, . . . be independent random variables such that E[ξj] = 0 for all

j and such that there exists M4 < ∞ such that E[ξ4
j ] ≤ M4 for all j. Then

limn ξn = 0 a.s.

Proof. Let Sn =
∑n

1 ξj . Then

E[S4
n] =

n∑
1

E[ξ4
j ] + 6

∑∑
i<j

E[ξ2
i ]E[ξ2

j ]

since the other terms of the expansion of S4
n have expectation 0 by assumption and

the above proposition. Now suppose η is an integrable positive random variable
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and let v := E[η]. Then 0 ≤
∫

(η−v)2dP =
∫
η2−2v

∫
η+v2 = E[η2]−E[η]2, so

that E[η]2 ≤ E[η2]. Apply this with η = ξ2
j to get that E[ξ2

j ] ≤ E[ξ4
j ]

1/2 ≤ M
1/2
4 .

Hence

E[S4
n] ≤

(
n+ 6

(
n

2

))
M4 ≤ 3n2M4.

Therefore E[(Sn/n)4] ≤ 3n−2M4, so

E
[ ∞∑

1

(Sn
n

)4]
<∞

which in particular entails that (Sn/n)4 → 0 a.s. 2

Lemma 8.4 Let ξ1, ξ2, . . . be independent random variables with E[ξj] = 0 and∑∞
1 E[ξ2

j ] <∞. Then
∑n

1 ξj converges as n→∞ a.s.

Proof. Let M :=
∑∞

1 E[ξ2
j ]. Let Sn =

∑n
1 ξj . Fix two rational numbers a < b

and let Un be the number of up-crossings of (a, b) of S1, . . . , Sn, i.e.

Un = max{k : ∃s1 < t1 < s2 < . . . < tk ≤ n : ∀1 ≤ j ≤ k : Ssj ≤ a, Stj ≥ b}.

Define the 0/1-random variablesC1, C2, . . . by takingC1 = 1 if a > 0 andC1 = 0
otherwise and then recursively

Cn = χ{Cn−1=1,Sn−1<b}∪{Cn−1=0,Sn−1≤a}.

Let Tn =
∑n

1 Cjξj . Since each Cn is σ(ξ1, . . . , ξn−1)-measurable, Cn and ξn are
independent and hence E[Tn] = 0. However

Tn ≥ (b− a)Un − (Sn − a)−

so the expectation of the right hand side is at most 0. Hence

E[Un] ≤ E[|Sn − a|]
b− a

≤ |a|+ E[S2
n]1/2

b− a
≤ |a|+M1/2

b− a
.

Letting U∞ = limn Un, the MCT gives E[U∞] < ∞, so that U∞ < ∞ a.s. By
countable additivity of measures, this holds simultaneously for all rational a and b.
Hence the sequence {Sn} a.s. has only finitely many up-crossings of all nonempty
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intervals, which means that either Sn converges or |Sn| → ∞. In either case
limn |Sn| exists, but may be infinite. However, by Fatou’s Lemma,

E[lim
n
|Sn|] ≤ lim inf

n
E[|Sn|] ≤ lim inf

n
E[S2

n]1/2 = lim inf
n

n∑
1

E[ξ2
j ] ≤M1/2,

where the last equality follows from independence and the final inequality by
assumption. Hence limn |Sn| <∞ a.s. 2

Lemma 8.5 (Césàro’s Lemma) Suppose that v1, v2, . . . is a sequence of real
numbers such that limn vn = v∞. Then limn vn = v∞.

Proof. Fix N so large that n > N ⇒ |vn − v∞| < ε. Then for n > N ,

vn >
1

n

N∑
1

vj +
n−N
n

(v∞ − ε)→ v∞ − ε

and

vn <
1

n

N∑
1

vj +
n−N
n

(v∞ + ε)→ v∞ + ε

as n→∞. 2

Lemma 8.6 (Kronecker’s Lemma) Suppose x1, x2, . . . are real numbers such
that

∑n
1 (xj/j) converges as n→∞. Then limn xn = 0.

Proof. Let vn =
∑n

1 (xj/j) and v∞ = limn vn. With this notation, we get

n∑
1

xj =
n∑
1

j
xj
j

=
n∑
1

j(vj − vj−1) = nvn −
n∑
1

vj−1.

Hence

xn = vn −
1

n

n∑
1

vj−1 → v∞ − v∞ = 0

by Césàro’s Lemma. 2

The next step is the strong law under a mild variance restriction.
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Theorem 8.7 (Law of Large Numbers under Variance Restriction (LLN(V)))
Let ψ1, ψ2, . . . be independent random variables with E[ψj] = 0 for all j and∑∞

1 (E[ψ2
j ]/n

2) <∞. Then limn ψn = 0 a.s.

Proof. By Kronecker’s Lemma, it sufffices to prove that
∑n

1 (ψj/j) converges
as n→∞ a.s. This in turn follows from Lemma 8.4 on taking ξn = ψn/n. 2

Lemma 8.8 (Kolmogorov’s Truncation Lemma (KTL)) Let ξ1, ξ2, . . . be iid
random variables with E[ξj] = 0 for all j. Let ηj = ξjχ{|ξj |<j}. Then

(a) limn E[ηn] = 0,

(b) P(lim supn{x : ξn(x) 6= ηn(x)}) = 0,

(c)
∑∞

1 (E[η2
j ]/n

2) <∞.

Proof. Since ηn has the same distribution as ξ1χ{|ξ1|<n} which converges point-
wise to ξ1, it follows by the DCT using |ξ1| as a dominating L1 function, that

E[ηn]→ E[ξ1] = 0.

This proves (a). For (b):
∞∑
1

P(ηj 6= ξj) =
∞∑
1

P(|ξ1| ≥ n)

= E
[ ∞∑

1

χ{|ξ1|≥n}

]
≤ E

[
|ξ1|
]
<∞,

where the second equality follows from the MCT. Hence (b) follows from Borel-
Cantelli’s Lemma. For (c):

∞∑
1

E[η2
n]

n2
=

∞∑
1

E[ξ2
1χ{|ξ1|<n}]

n2

= E
[
ξ2

1

∞∑
1

χ{|ξ1|<n}
n2

]
= E

[
ξ2

1

∞∑
n=b|ξ1|c+1

1

n2

]
≤ 3E

[
|ξ1|
]
<∞,
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where the second equality follows from the MCT. 2

Theorem 8.9 (The Law of Large Numbers) Let ξ1, ξ2, . . . be iid random vari-
ables with E[ξ1] = 0. Then

lim
n
ξn = 0

almost surely.

Proof. Let ηn = ξnχ{|ın|<n}. By (c) of KTL and LLN(V), almost surely,

lim
n

1

n

n∑
1

(ηj − E[ηj]) = 0.

By KTL (a) E[ηn]→ 0, so by Césàro’s Lemma, n−1
∑n

1 E[ηj]→ 0. Hence almost
surely,

lim
n
ηn = 0.

Finally, by KTL (b), almost surely ηn 6= ξn for only finitely many n, so

lim
n
ξn = 0

almost surely. 2
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