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1 Normed vector spaces

A vector space (VS) consists of objects (such as vectors or functions) that can be
added and multiplied by scalars in such a way that the commutative and distribu-
tive laws hold. The set of scalars can be any field /, but here we will always have
K=Ror K =C.

Let X be a VS. A norm on X is a function || - || : X — [0, co) for which

o ||A\z|| = |\|||z|| forall A € K and x € X,
o ||z +y| <] + |ly] forall z,y € X (the triangle inequality),
e ||z]| =0iffx = 0.

A norm gives rise to a metric, p(z,y) = ||z — y||, and hence to a topology, the
so called norm topology. Two norms || - ||; and || - || are said to be equivalent if
there exist 0 < C; < Cy < oo such that

Ve € X : Cifjz]l; < z]l2 < Col|]fs.

Equivalent norms generate the same topology and the same Cauchy sequences.
A VS equipped with a norm is called a normed vector space (NVS).
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A NVS which is also complete is called a Banach space.

The following theorem will provide an important tool for proving complete-
ness of a NVS. Recall that for {z,,} C X, we say that the series )z, is abso-
lutely convergent if > ||z, | < oo.

Theorem 1.1 A NVS X is complete iff every absolutely convergent series con-
verges (in norm).

Proof. Suppose on one hand that X" is complete and ) | ||z, || < co. Writing
Sy = Ziv Z,, We have

M M 00
1Sv = Sull = 1D @all <D llzall < D flawnl = 00

N+1 N+1 N+1

as M, N — oo. Thus {Sy} is Cauchy and hence convergent.

On the other hand suppose that every absolutely convergent series converges
and that ||z, — =,/ — 0 as m,n — oo. Pick for each j the index n; so that
m,n > n; = ||z, — x,|| < 277. Setting 2o = 0, we have

k

Ly, = Z(‘T"J - xnj—l)

1

which has norm less than 1 by the triangle inequality. Hence x,, converges to
some limit y. However for n > n; and k large enough,

e = yll < [0 = T, |+ n, — yl] < 27*D.

<2k <2k
lLe.z, — . O

Example. Let X be a topological space and let B(X) be the space of bounded
continuous (complex-valued) functions on X. Define the norm || - ||, on B(X) by

[f1lw = sup{|f(z)| : € X}.

Suppose that )~ || f,||. < oo. Then clearly
1>~ falle D I fallus
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so f:=> f.€ B(X).Does Zjlv fn converge to f? Yes:

N [e'¢) oo
1D fa=Fllu= 1D fallw <X Ifalle =0

1 N+1 N+1

as N — 0o. By Theorem 1.1 we conclude that B(X) is a Banach space. O

Example. Let (X, M, 1) be a measure space. We claim that L' (X, M, u1) is a
Banach space. (Here we have to identify functions that are equal a.e.)

Recall that the norm is given by || f||; = [ |f|. Suppose that >_ || f.|l1 < oc.
Then by the MCT,

/Z [l = Z/ [l = 2l < o0

so that f := ) f, exists (a.e.) and, using the MCT again,

N (o) o) o7}
DIEFEY IDSAES Sy AIAED S TATEY:
1

N+1 N+1 N+1

as N — oo. Now Theorem 1.1 proves our claim. O

If X and ) are NVS’s, then the product norm on X x ) is given by ||(z,y)|| =
max(||z||, [|y||). This norm is equivalent to ||z|| + [|y||, (|z]|* + [|¥/|?)"/2, etc.

Next we consider linear maps from X to ). A linear map 7' : X — )Y is said
to be bounded if there exists C' < oo such that ||Tz|| < C||z||. Here, of course,
the norm notation refers to the norm of X for objects in X" and to the norm of )
for objects in ). Note that this notion of boundedness is not the same as when we
speak of a bounded function.

Proposition 1.2 The following statements are equivalent
(a) T is bounded.
(b) T is continuous.

(c) T is continuous at 0.



Proof. That (b) implies (c) is trivial. If (c) holds, then there exists a 6 > 0
such that ||z|| < 20 = ||Tz|| < 1. Thus, for any z,

B Izl ox 1
17l = 72y < L,

]

i.e. T is bounded. Finally assume that (a) holds. Fix =z and ¢ > 0. Then if
|z" — z|| < ¢/C, we have

172" = Te| = |T(2" — 2)|| < Clla" —=f| <e
(]

Let L(X,)) be the space of bounded linear operators from X’ to ). In this
notation it is also assumed that L(X', )) is equipped with the operator norm given
by

ek
1T} = sup{{|T|| - fJ=f| = 1} = SHP{W 1w € X}

The space L(X,)) is not always complete, but the following holds
Proposition 1.3 If Y is complete, then so is L(X,)).
Proof. Assume that {T,,} C L(X,)) is Cauchy. Then for arbitrary = € X,
[ Tha = Toxl| = [[(Tn = Ton)z|| < 1T — Tl |-

Hence {T},x} is Cauchy and hence convergent, since ) is Cauchy. We can thus
define
Tr =limT,z,x € X.

Then the operator 7" is linear and || 7,,z|| — ||Tx|| (see exercise 2), so

1T = sup{[|T=[| : [|=[| = 1} = sup{lim [Tz« [lz] = 1} < limsup || T[] < o0
since {7, } is Cauchy. Hence " € L(X',)). We need to show that ||7,, —T'|| — 0.

Pick ¢ > 0 and N so that m,n > N = ||1T,, — T,,,|| < €. Then for any = with

el =1,

Tz —Tz|| = ||Thr —lim T,,x|| = lim || 1,2 — Tyz|| < limsup |1, — Tl <e.

Hence ||T,, — T|| < e. 0



Suppose that 7" € L(X,)) and S € L()Y, Z). Then
IS < STl < [STITI|

sothat ||[S o T'|| < [|S]|||7|| and in particular S o T" € L(X, Z).

If T € L(X,Y) is bijective and T~ is bounded (i.e. T~! € L(Y, X)), then we
say that 1" is an isomorphism. If T' also has the property that || Tx| = ||z|| for all
x, then t is said to be an isometry. Whenever two NVS are isomorphic, the have
corresponding notion of convergence. If they are also isometrically isomorphic,
we may think of them as two interpretations of the same space. When & and Y
are isometrically isomorphic, one writes for short X = ).

2 LP-spaces

Fix a measure space (X, M, u) and 1 < p < co. For f : X — C measurable, let

1= ([ ram) "

Then LP(X, M, 1) (or LP(X) or LP(u) or simply LP when there is no risk for
confusion) is the space of measurable f : x — C for which || f||, < co. A special
case is when M = P(X) and p is counting measure, in which case we write
[P(X) for LP(X, M, 11). When also X = N, we write simply /7. (I.e. when we
write [ without specifying X, it is understood that X = N.)

Clearly [[Af||, = |||l f|l, for any scalar A. Also

£+ 9l = [ 1£+9P < [@max(sl 1o < 271+ lolp).

Thus L? is a vector space (with identification of functions that are equal a.e.). We
claim that || ||, is a norm. What remains to be shown is that the triangle inequality
holds.

Lemma 2.1 Let a,b > 0 and A € (0,1). Then
a*b'™* < da+ (1 — \)b.

Proof. The function g(z) = a®b'~" is convex, so g(A) < Ag(1) + (1 — \)g(0).
This is exactly what we wanted to prove. O



Theorem 2.2 (Holder’s inequality) Ler 1 < p < coand 1/p+ 1/q = 1. Then
1fglle < I 1bllgllq.

Remark. Below, we will define || - ||, in such a way that it will be easily seen
that Holder’s inequality extends to 1 < p < oo.

Remark. When 1/p + 1/q + 1, one says that p and g are conjugate exponents.

Proof. If either || f||, or ||g||, is O or oo, then the result is trivial, so assume
otherwise. Apply Lemma 2.1 with a = |f(x)[?/|[f||?, b = |g(x)|?/[lg]|¢ and
A=1/p,sothat1 — X\ =1/g, to get

F@(@)] _ f@P  lg@)
17Toliale = 21718 gl

Integrating both sides gives

1 1
1f9ll1 <yl

Ifllllglle = »  q
0

We are ready for the triangle inequality for LP-norm a.k.a. Minkowski’s in-
equality

Theorem 2.3 (Minkowski’s inequality) Suppose 1 < p < oc. Then

1+ glle < I1fllp + llgllp-

Proof. The result is trivial forp = 1 or f + ¢ = 0 a.e. so assume 1 < p < oo
and || f + g[|, > 0. Clearly

1F+gl” < |f+ 9P (| fI+1gl)-

Let ¢ = p/(p — 1), the conjugate exponent of p. Then

540l = [1r+ar < [1015 490+ [ gl + g

(r—1)/p
< UA01S + 9l + gl + 9l = (11 + Dl ([ 17+ o)
= (£l + Ngl) 1 + gl
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where the second inequality uses Holder’s inequality and the first equality uses
that ¢(1 — p) = p. The result now follows on dividing both sides with || f + g[[5~".
O

By Minkowski’s inequality || - ||, is indeed a norm and L? is indeed a NVS.
Moreover

Theorem 2.4 L? is a Banach space.

Proof. We want to show that L? is complete and to that end we use Theorem
1.1. Assume that {f,} is absolutely convergent, i.e. B := > | f.ll, < oo.
Write G,, = > | fx| and G = lim,, G,, = >_7° | f»|. By Minkowski’s inequality,
1Gall, < D27 11 fxll, < B. By the MCT, ||G||, < B. Hence G € L? and > }° f
converges a.e. Write F' = Y [° f, € L. It remains to show that || >} fx— F|, —
0. However F — > fiy = > | fr — 0 a.e. and

n k
=3l < (IF1+ Y 10) < @Gy er
1 1

so this follows from the DCT. O
The next result is an approximation result for L.

Proposition 2.5 The family of simple functions, i.e.
{¢p = Z ajxg, - n € N,{E;} disjoint}
1

is dense in LP.

Proof. Fix an arbitrary f € LP. A simple function ¢ is in L? if u(E;) = 0
for every j and it is a fundamental fact of integration theory that one can find such
¢n, so that ¢, — f and |¢,| T f a.e. Since |, — f|P < (2|f|)F, the DCT gives
[ |én — fIP — 0 as desired. O

The space L°°. Using the usual convention inf () = oo, we define

flloc = esssup [ f(2)] = inf{a - p{a - [f(z)| > a} > O}



Note that p{x : |f(x)| > || flle} = 0.

We now define L>°(X, M, p) as the space of measurable functions f : X — C
such that || f||. < co. Note that by the definition of || - ||, for any f € L°°, there
exists a bounded function f’ such that f = f’ a.e., so L* can be regarded as the
space of bounded functions.

A few simple facts follow.

(D 1 fglli < Ifll1]lgllee G-e. Holder’s inequality holds also for p € {1,00}.)

Q) NIf + 9lle < IIflle + llglloo (i-€. Minkowski’s inequality holds also for
p=00.)

(3) ||fu — flloo = 0 = IE such that u(E¢) = 0 and f,, — f uniformly on E.
(4) The family of simple functions is dense in L*°.

(5) L is a Banach space.

Statements 1-4 are very easy to prove and are left as an exercise. For (5),
suppose that { f,,} is absolutely convergent. Then {f,,(x)} is absolutely conver-
gent for a.e. z, so there exists a limit f := lim, f, a.e. Pick m so large that
n>m = ||fn— fmlleo < 1and M so large that | f,,(z)| < M a.e. Then clearly
|f(@)] < M+1ae,ie. feL® Also | fu— fllo < >y Ifllc = 0.

Next we turn to relationships between LP’s for different p’s. Whenp < ¢ <,
we have on one hand that L¢ C LP 4+ L", which means that any function in L¢
can be written as the sum of one function in L? and one function in L". On the
other hand we have that ¢ O L" N LP. The proofs of these two facts are left as
exercises. Here are two more facts.

Proposition 2.6 Assume that 1 < p < q < oo.
(a) If  is counting measure, then || f||, > || f||, Consequently L*(p) C L(p).

(b) If u is finite, then
11l < ||quM(X)(q—P)/(pq)_
Consequently [P O L1.

Remark. Part (b) when p is a probability measure should be known to a proba-
bilistically oriented person: E[¢7]!/? < E[¢9])'/4,
Proof.



(a) In case ¢ = co, we have
If11% = (sup |f (2)])" < Do LF@P =II£115.

Now assume ¢ < oo and assume without loss of generality that || f||, = 1.
Then | f(z)| < 1 for every z, so that | f(z)[? > |f(x)|? and hence

17l = (S 1r@r)” = (i@ = 1= 111,

(b) If ¢ = oo, scale f so that || f|l. = 1. Then obviously || f|l, < u(X)V? as
1
desired. For ¢ < oo, observe that — + ——— = 1. Hence Hoélder’s

, o a/p  q/(qa—p)
inequality gives

LFIE = AP 2l < WA ool Uasta—p) = ILFIG(X) 075,

Now take both sides to the power 1/p to finish the proof.
a
Example. L”-contraction of Markov chains. Let {X;}{°, be an irreducible
aperiodic Markov chain on the finite state space S. Let m denote the stationary
distribution (i.e. P(X; = s) — 7(s), s € S.) Let P be the transition matrix and

let f: S — C. Write E,[-| for E[-|X = s]. Then (Pf)(s) = E4[f(X1)]. For the
LP(S,P(S), n)-norm, this means that

IPAII = Ex[|(PF)(Xo)l] = Ex[[Ex, [ (X0)]P]
< Eq [Ex, [ FC0)N)] = Ex IOl | = 171

with equality iff f is constant. Hence ||Pf||,/| fll, < 1. Better estimates of this
ratio are sometimes used to bound the mixing time of the Markov chain. a

3 The dual of .

Let X be a NVS. A linear map ¢ : X — K is called a (K -valued) linear func-
tional. Denote by X'* the space L(X, K), the space of bounded linear functionals
on X. The space X* is called the dual of X.
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In this section we will consider the case X = LP(X, M, u). The number ¢
will throughout be assumed to be the conjugate exponent of p. For g € L4, define

%m=/MWJem

Clearly ¢, is linear and

5,(PI =] [ 19| < [ 1751 =175l < 171l

Hence ||¢4]| < ||g||,> and in particular ¢, is bounded, i.e. ¢, € (L?)*.
Proposition 3.1 Ifp > 1, then ||¢4|| = ||9]|,

Proof. Since p > 1 we have ¢ < co. By the above, it remains to show that
llgll; < ||#gll- This is trivial if ¢ = 0 a.e., so we may assume that ||g||, > 0. Let

f - lol"'sang
lglld™

(Here the sgn(z) = €' & 2 = |z|sgnz < |z| = z5gnz.) Then, since (¢ —
p =g,

1 ol
11 = — g [ lol =t =1
T gl lglla

Hence

Jlgl""gsgng _ [lg)
lgllg™ lgllg™

= ||9||<I'

99l > 10(7)] = | / fo| =

O

Extension: If ;. is semifinite, then the result of Proposition 3.1 holds also for
p = 1< ¢ = oo. (Recall that 4 is semifinite if 3£ : 0 < p(E) < 0o.) We omit
the proof.

Put in other words, Proposition 3.1 says that the map g — ¢, is an isometry
from L9 to (LP)*. In fact, it is also an isomorphism:

Theorem 3.2 Let i be o-finite and 1 < p < oc. Then for any ¢ € (LP)*, there
exists g € L7 such that ¢ = ¢,.

10



Extension: If 1 < p < oo, then the result holds without restriction on p. We will
not prove this.
Moral: (L?)* and L? are isometrically invariant. In other words these can be seen
as two interpretations of the same space. In short this is written (L?)* = L9, but
one often, with abuse of notation, writes even (L?)* = L4.

Proof.  Assume first that p is finite. Fix an arbitrary ¢ € (LP)*. Since p is
finite, xp € LP for all £ € M. Hence we can define v(E) = ¢(xg), F € M.
Now suppose that £, 7 = 1,2, ... are disjoint and write £/ = U{°E;. Then

e =Y xell = 1> Ell, = u( U Ej)p 0.
1

n+1 n+1

Hence } | xg, — x(E) in LP. Since ¢ is a continuous functional, this en-
tails that ¢(3 "7 xg,) — ¢(x(E)) in LP. By the linearity of ¢, it follows that
v(UPE;) = > " v(E;), ie. v is a signed measure. Hence the Radon-Nikodym
Theorem implies that there exists g € L' such that v(E) = ¢(xg) = [, gdu.
E € M. By linearity of ¢ it follows that ¢(f) = [ fg du for all simple functions
f. For general f, Proposition 2.5 tells us that there exist simple functions f,, such
that || f, — f||, — 0. Hence, by continuity of ¢,

o) =tmo(s,) = lim [ fug

Also, By Holder,

| [ g~ [ 15 < [100= D29l <1152 = Fhelgll =0

Thus lim,, [ f,g = | fg and hence ¢(f) = [ fg as desired. (Note however that
there is a gap here, since we have not shown that g € L9, merely that g € L*. We
will come back to that immediately after this proof.)

Now let p be o-finite and pick sets £, such that F,, T X and u(E,) < oc.
By the above there exist g, € L? such that ¢(f) = [ fg., [ € LP(E,) and
l9llq = ll@|eeen || < ||@]]. Note that each g, is unique up to alterations on a null
set. Define g by letting g = ¢,, on F,,. Then |g,| 1 |g| a.e. Hence

[ 1al7 =tim guJ? <

11



so that ¢ € L4. By the DCT, g, — ¢ in L?. Now for f € L?, we have fxp, €
LP(E,) and by the DCT fxg, — f in LP. Hence
ligl/fgn—/fg‘

snmam/ﬁﬂ%—gnsmnwmumwn—mu=a

o(5) ~ [ 4] =

lim ¢(fxz,) —/fg‘ =

by Holder’s inequality. O

Now we fill in the gap in the above proof. We do so by using the following
result, which is sometimes referred to as the “Reverse of Holder’s inequality”.

Theorem 3.3 Assume that 1 is semifinite. Let S be the family of simple functions
whose support is of finite measure. Assume that fg € Ly for all f € S and that

M,(g) = sup{’ /fgdu‘ feSfll,= 1} < 00.
Then ||g||, = M,(g). In particular g € L.

Proof. That M,(g) < ||g||, follows from Hélder, so we focus on the reverse
inequality. We will settle for the case when  is o-finite. Assume first that ¢ < oo.
Let £, T X with u(FE,) < oco. Let h, be simple functions with h,, — ¢ and
|| < lgl. Let g, = huXg,. Then g, € S, g, — g and |g,| < |g]. Let

I

Hgn”gil

Jn

Then, as in the proof of Theorem 3.1, || f,,||, = 1. Note also that [ |f,g.| = ||gll,-
Thus, by Fatou’s Lemma,

ol < timin |, |, = limmint [ |£,)

< liminf/ | fng| = liminf/fng < M,(g)

since f, g is nonnegative.

12



Now to the case ¢ = co. Let A = {z : |g(z)| > M(g) + €} and assume that
w(A) > 0 for some € > 0. Then we can find B C A with 0 < u(B) < oo. Let
f = x55egng/u(B). Then f € S and || f||, = || f|l, = 1. However

/fg=/3%>Moo<g>+e,

a contradiction. O

Now consider the function g from the proof of Theorem 3.2. For f € S and
Ifll, = 1. we have | [ fg| = [6(f)] < [[4]]. so My(q) < oo and hence g € L.

4 The Hahn-Banach Theorem

Let X be a NVS and recall that X¥* = L(X', K'). How can we be sure that this is
an interesting space in the sense that it really contains any nontrivial objects? In
case X = LP(X, M, u) for some concrete X like e.g. X = R™ we know, and saw
in the previous section, that this is indeed the case, but in general? As we shall
see, the Hahn-Banach Theorem answers our question with a yes”. First however,
we need some preliminaries.

Suppose that f : X — C is a linear functional. Then v := R f is a real-valued
linear functional and since Sf(z) = —R(if(z)) = —Rf(ix) = —u(iz), we have

On the other hand, if u : X — C is a real-valued linear functional, then f(x) :=
u(z) —iu(iz), © € X, is a complex-valued linear functional. In any case, the
equality f(z) = u(z) —iu(iz), x € X, entails that

LFIF= Tl

This follows on one hand from |u(z)| = [Rf(z)| < |f(x)], so that ||u| < || f]],
and on the other hand from

[f(@)| = fz)sgnf(z) = f(sgnf(z)z) = u(sgnf(x)z) < |lull]lz|

so that |[ || < [[ul]

Let X be a vector space over R. A Minkowski functional on X is a function
p: X — R such that

13



o p(Ax) = Ap(z) forall A > 0and z € X,
e p(z+y) <p(x)+py) forallz,y € X.

In particular all linear functionals and all seminorms are Minkowski functionals.

Theorem 4.1 (Hahn-Banach Theorem, real version) Let X' be a vector space
over R and p a Minkowski functional on X. Let M be a linear subspace of X and
f: M — R a linear functional such that f < p on M. Then there exists a linear
functional F : X — R such that F = f on M and F < p.

Proof.  The result is trivial if M = X, so assume that there exists an z €
X \ M. For any y1, 4, € M,

fn) + f(y2) = flyr + ) < plyr +y2) < plyr — @) + ply2 + 2),

- ) = plys — ) < Fl) — plyn + ).

Since y; and y, were arbitrary, we get

wp@ﬁﬁ—my—@)ﬁhﬁ(ﬂw—p@+xﬂ-

yeM yEM

Fix a number o between these two quantities. Define g : M + Rz — R by
gy + Ax) = f(y) + Aa. Then g is linear and extends f and for A > 0,

gly -+ Az) = A(Fy/N) +a) < A(Fl/D) + e+ y/3) = [(y/N)

= p(y + Azx),

where the inequality follows from lower bound in the definition of .. For A < 0,
gy +2x) = N (Flu/IA) = ) < N(F@/IN) = F@/IN) + p(y/IA] = @)

=p(y + Az)
where the inequality follows from the upper bound in the definition of o. Hence
g=p
Now let F be the family of linear extensions, g, of p with g < p. Partially
order F with respect to inclusion of domain. Then every chain has an upper
bound, namely the extension defined on the union of the domains of the elements

14



of the chain. By Zorn’s Lemma, / has a maximal element, F. The element /'
must be defined on the whole of X for if not, it could be extended by the above
procedure. O

Now assume that f : M — C is a linear functional and that | f| < p, where p
is a seminorm, i.e. a Minkowski functional with the extra property that p(Az) =
|Alp(x) forall A € C and z € X. Then u = Rf is a real-valued linear functional
and can hence be extended to U : X — C with |U| < p. Let F(z) = U(x) —
iU (iz). Then f extends f to the whole of X’ and

|F(z)| = F(z)sgnF(z) = F(sgnF(z)x) = U(sgnF'(z)x)

< p(sgnF(z)r) = p(z).

In summary:

Theorem 4.2 (Hahn-Banach Theorem, complex version) Let f : M — C be

a linear functional on the linear subspace M of X. Assume that p is a seminorm
on X and that | f| < p on M. Then there exists F' : X — C such that F = f on
Mand |F| < p.

Here are some applications.

(a) For any x € X there exists an f € X* such that f(x) = ||z|| and || f|| = 1.

Proof. Let M = Cuz and define f on M by f(Az) = A||z||. De-
fine p by p(y) = |ly||- Then p is a norm andS hence a seminorm and
|[f(Az)] = |M|z]|| = || Az|| = p(x). Now extend f to the whole of X
using the Hahn-banach Theorem. The extension satisfies |f| < p, so for
any y € X, | f(y)] < |lyll, so [[f]| < 1. However [f(x)] = [l]|, so [| /]| = 1.
O

(b) If 21,29 € X and x; # xo, then there exists f € X* such that f(z) #
f(x2).

Proof. Use (a) with z = x1 — x». O

(c) If M is a closed subspace of X and = € X' \ M, then there exists f € X'*
with f =0 on M and f(z) # 0.

15



(d)

Proof. Letd = inf{|lz —y|| : y € M}. Thené > 0, for if § = 0, then there
would exist ¥, € M with ||z — y,|| — 0, i.e.y, — 2. Since M is closed
this entails that x € M, a contradiction.

Define f on M + Cz by
fly+ Azx) = A6.
Then f = 0 on M and

[f(y + Az)[ = (A6 < [Alllz +y/All = lly + Azl

where the inequality follows from the definition of ¢. Thus |f| < || -
can be extended by Hahn-Banach.

,s0 f
O

For z € X, define & : &* — C by 2(f) = f(z). Then z — & is a linear
isometry from X’ to A™**. In particular, letting X' := {Z :z € X}, we have
X C X", ANVS X for which X = A is said to be reflexive.

Proof. Clearly the given map is linear. Also

(N = 1F @) < 1]

and hence ||Z|| < ||z||. On the other hand, by (a) there exists an f € X*
such that f(x) = ||z|| and || f|| = 1, so |z(f)| = ||=|| = ||=|| and hence
2] = =] O

The Baire Category Theorem and consequences
thereof

The Baire Category Theorem (BCT) is the following topological result.

Theorem 5.1 (Baire Category Theorem) Let X be a complete metric topologi-
cal space. Then the following hold.

(a)
(b)

If foreachn = 1,2, ..., U, is an open dense set, then N, U, is dense.

The space X cannot be written as a countable union of nowhere dense sets.
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Pﬂof. First we show that (a) implieﬂa). If E,, is nowhere dense, i.c. E_no =10,
then F,, is dense an open, so by (a) N.E, is dense. Therefore

C

and since a dense set cannot be empty, (b) follows.

Now we prove (a). We want to show that (N,U,) N W # () for any open
nonempty set W. Since U; N W is open and nonempty, we can find r; € (0,1)
and z; € X suchthat B, (z1) C UyNW. In the same way there exist , € (0,1/2)
and x5 € X suchthat B,,(z2) C UsNB,, (z1). Repeating the argument once again
gives 13 € (0,1/4) and 23 € X such that B,,(x3) C Us N B,,(z3). Repeating the
argument inductively gives a Cauchy sequence of points x,,. Since X is complete,
x, — x for some x € X. For every n, we have

HAS Brn('rn> g Un N Brn,l('rnfl) g Un N w.
Hence = € (N, U,) N . O

One should note that the BCT is purely topological, it holds for any topological
space that is homeomorphic to a complete metric space.

Example. Wiener’s Tauberian Theorem. Let T = R/27Z = R mod 27 be the
unit circle in the complex plane.

Question: For which functions f € L'(T) is it true that the translates f, = f(- —
y),y € T, span L'(T) in the sense that the set

N
M = {Zajfyj :NeN,a; € C,y; € T}

J=1

is dense in L'(T)?

Let ¢x = [, f(xz)e " dxz, f’s k’th Fourier coefficient. Note that the k’th
Fourier coefficient of f, is e~ ™. If ¢, = 0 for some k, this means that the k’th
Fourier coefficient of f, is also 0 for all y € T and hence that all functions in
M have 0 for their k’t Fourier coefficient. Hence e.g. the function e** € LY(T),
whose £’t Fourier coefficient is 1, cannot be approximated by functions in M.

Now assume ¢, # 0 for all k. Assume that M # LY(T) and pick gy €
LY(T) \ M. According to application (c) above of Hahn-Banach, there exists a
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linear functional ¢ on L'(T") such that ¢ = 0 on M and ¢(go) # 0. By Theorem
3.2 there exists a function h € L>°(T) such that

o(g) = / g(2)h(x)dz, g € LM(T).

Since f, € M forall y € T, this entails that [, f(z —y)h(z)dz = 0forally € T.
In other words, the convolution % * f is identically 0 (where h(z) = h(—z)).
However the ’th Fourier coefficient of / * f is djc, where dj, is the k’th Fourier
coefficient of h. Since ¢, # 0 for all k£, we have d, = 0 for all k. Thus 2 = 0 and
consequently ¢(go) = 0, a contradiction.

In summary: M spans L'(T) iff ¢, # 0 for all k. O

Recall that a map f : X — Y is called an open map if f(U) is open in Y
whenever U is open in X. An immediate consequence is that if f is bijective and
open, then f~! is continuous. If Y is metric, then openness of f can be expressed
as that for all open U in X and all x € U, there exists > 0 such that

B,(f(x)) € f(U).
If If X and Y are NVS’s and f is linear, then this boils down to
Ir > 0: B.(0) C f(B1(0)).

Theorem 5.2 (The Open Mapping Theorem) Let X and )Y be Banach spaces
and T € L(X,Y). Then T surjective implies T open.

Proof.  Write B, for B,(0) (in X as well as in ))). We want to show that
Ir > 0: B, C T(By). Since T is surjective and X = U, B,,, Y = U, T(B,) =
U,nT(By). Hence the BCT implies that 7'(B;) is not nowhere dense. (Here we
use that ) is complete.) Thus we can find yy € ) and r > 0 such that

Bs,(y0) € T(By).

Pick y; € T'(By) such that ||y; — yo|| < 4r and y; = Tx for some x € B;. Then
By, (y1) € T(B;) and whenever ||y|| < 4r, wehavey = y; + (y — 1) € T(B»),
since y — y; € Ba.(—y1) € T(By). By scaling, this generalizes to y € T'(Bay-n)
whenever ||y|| < 2r27".

Now pick y with ||ly|| < 7. Theny € T'(B;/2). Hence there exists z; € By,

with ||y — T'zq|| < r/2. This entails that y — Tx; € T(By4). Thus we can find
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Ty € By with ||y — Twy — Tas|| < r/4. Then y — Tay — Ty € T(Byys),
etc. Keeping on inductively gives x; € By-;. Since X’ is Banach, ) ;T 18
convergent by Theorem 1.1. Letz = > .x;. Thenz € By and |y — T'z|| =
limy [ly — 2N Ta;|| = 0, i.e. y = Tz In summary there exists 2 € B, such that
y = T'x whenever ||y|| < r, as desired. O

Corollary 5.3 If X and Y are Banach and T' € L(X,)) is bijective, then T is an
isomorphism.

Proof. Since T is bijective, then T~! exists. By the Open Mapping Theorem,
T~ is continuous and hence bounded. O

Theorem 5.4 (The Closed Graph Theorem) Assume that X and ) are Banach
spaces, T' : X — Y linear and that

() ={(z,Tx) ;2 € X} C A XY
is closed. Then T is bounded.

Proof. Let m; and 75 be the projection maps from I'(7T") to X’ and ) respec-
tively, given by 7 (z, Tx) = z and my(x, Tx) = Tz. By the definition of product
norm, ||m|| < 1and ||m|| < 1andhence m; € L(I'(T), X) and my € L(I'(T),)).

Note that I'(T") is complete, since it is a closed subspace of the complete space
X x Y. Thus, since m is bijective, it follows that 7, ' is bounded by the above
corollary. Since also 7, is bounded, 7y o 7] L' — T is bounded. O

Theorem 5.5 (The Uniform Boundedness Principle) Assume that X is a Ba-
nach space and Y a NVS. Let A be a subfamily of L(X, ). If suppc 4 || Tx|| < 0o
forall x € X, then suppc 4 | T|| < oo

Proof. Let

Bo = {a:sw |Tall < n} = () : IT2] < n}.
TeA TeA
Observe that by assumption U, E,, = X" and that since ||7°(-)|| is continuous, each
E, is closed. By the BCT, some F,, must contain a ball, B,.(zq). For any x with
||z|| < r, we have forany T" € A,

[Tzl < Tz = o)l + [|Tol| < 2n,
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since = — x( and x are both in B, (zy) C E,. Hence for any « with ||z|| < 1 and
any T € A, we have ||Tz|| < 2n/r. Hence suppc 4 ||T|| < 2n/r. O

6 Hilbert spaces

Hilbert spaces are Banach spaces with extra geometric structure. The norm arises
from an inner product. Let X be a vector space over C. An operation (-,-) :
X x X — Cis called an inner product if for all x,y,2 € X and a,b € C,

@) (ax + by, z) = alz, 2) + by, 2),
b) (y,z) = (y,2),
(¢) (x,z) € (0,00) for all z # 0.

Note that from (a) and (b), (x,ay + bz) = (ay + bz,x) = a(y,x) + b{z,z) =
a(z,y) + b(x, z). It also follows that (0,z) = (x,0) = O for all z. When X is
equipped with an inner product, we say that X is a pre-Hilbert space.

Assume now that X is a pre-Hilbert space. Define

]| = (2, 2)"%.

The notation suggests that this is a norm. Let us show that this is indeed the case.
For that we will need the following well-known result.

Theorem 6.1 (Schwartz’ inequality) For all x,y € X,
(z,y) < [lzllllyll,
with equality iff x and y are linearly dependent.

Proof.  The result is trivial if y = 0, so we may assume that y # 0. Let
a = sgn(x,y), z = ay and pick t € R. Then

0<(z—tz,x—t2) = (v,2) — t{zx,2) — t{z,2) +1t*(2,2)

= [lz])* = 2t[(z, )| + ||y
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where the last equality follows from the definition of «. Differentiate the right
hand side with respect to ¢ and derive that this expression is minimized for ¢t =
[(z,y)|/|ly||*. Plugging this into the inequality yields,

20(z, ), Nz, y))?
2 + 2
]| [yl

)P

0 < [l]* —
Iyl

= [llI* -

This proves the desired inequality. Also, by part (c) in the definition of inner
product, equality holds iff x — tz = 2 — aty = 0 as desired. O

Note. If (-,-) is real-valued, then the ¢ defined in the proof is also real-valued.
Hence equality holds in Schwarz’ inequality iff © = cy for a real constant c.

Note that (z,y) + (y, z) = 2R(x, y). Therefore
lz +yl* = (@ +y, 2 +y) = z]* + 2R(z, y) + |yl

< ll2l* + 2z, ) lyl* < M=l + 202llyll + Iy1I* = (=l + lyl)?,

here the second inequality follows from Schwarz’ inequality. This proves the
triangle inequality. Hence || - || is a norm. Thus a pre-Hilbert space X" is a NVS.
If X is also Banach, then X is said to be a Hilbert space.

Example. Consider X = L*(X, M, ). Let

(t9) = [ fadn

This is well defined since | fg| < (|f]* + |g|*)/2. It is readily checked that this
defines an inner product, and the resulting norm becomes

191 = ([ 5572 = ([ 172 = 1)

Hence L? can be seen as a Hilbert space. (However L” is not a Hilbert space for
any p other than 2.) O

Proposition 6.2 (-, -) is continuous.
Proof. Letz, — xandy, — y,ie. ||z, — x| — 0and ||y, — y|| = 0. Then
(@, yn) — (2 )| = [2n—2, Yn) (@, yu—9)| < 20— lyall+ 2] lyn—yll — O,
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since {||y»||} converges to ||y|| and is hence bounded. O

Whenever = and y are two elements of the Hilbert space A" such that (z,y) =
0, we say that x and y are orthogonal. For short, this is sometimes written as
x L y. The following version of the Pythagorean Theorem holds for Hilbert
spaces. The proof is trivial.

Theorem 6.3 (The Pythagorean Theorem) If x; L z; foralll <i < j <n,

then . .
1>zl = Nl
1 1
We also have
Theorem 6.4 (The Parallelogram Law) Forall x,y € X,
lz+ ylI* + llz — ylI* = 2(ll=l” + ly]*).

The proof is a straightforward expansion of the left-hand side.

The next result states that vectors in a Hilbert space can be projected onto a
closed linear subspace. For a linear subspace M of X, we write M1 := {z €
X:YyeM:z Ly}

Theorem 6.5 Let M C X be a closed linear subspace. Then for any x € X there
exist unique elements y € M and z € M~ such that x = z + 1.

Proof. Fix x and let 6 = inf{||z — y|| : y € M}. Let y,, € M be such that
|z — yn|| — 6. By the Parallelogram Law,

QHyn - xHZ + 2Hym - tz = “yn - ymH2 + Hyn + Ym — 23:”2.

Rearranging gives
1
yn — ym”2 = 2|y, — SCHQ + 2||ym — 5CH2 - 4”§(yn + Ym) — xHQ

< 2(llyn — 2l” + llym — @II*) — 40°

by the definition of 4, since 3(y, + yn) € M. The right-hand side tends to 0 as
m,n — o0, so {y,} is Cauchy and hence convergent. Let y = lim,, y,. Since M
is closed, y € M. Let z = x — y. We claim that z € M. To see that this is so,
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pick u € M. Then there exists ¢ € C with |c¢| = 1 so that (z, cu) is real. Since
z+teu =z — (y — teu) and y — teu € M, the function f(¢) := ||z + tcul* is
minimized for ¢ = 0. However

F(&) = ll2l* + 2t(z, cu) + ¢*]Ju®

so that 0 = f(0) = 2(z, cu). Hence also (z,u) = 0 as desired.
For the uniqueness part, assume that we also have x = 2’ + 3. Theny — ¢ =
2 —zsothaty — ¢/, 2 —z2 e MN Mt ie.y=vy,2= 2. O

Fixing an element y € X, we can define the linear functional f,(x) = (z,v),
x € X. Then, by Schwarz, |f,(x)| = |(z,y) < ||z||||y|] with equality when =
is a constant times y. Hence ||f,|| = ||y|| and the map y — f, is a conjugate
linear isometry from X to X'*. In fact, the following result shows that it is also
surjective.

Theorem 6.6 For every f € X* there exists a unique y € X such that f(x) =
(x,y), x € X.

Proof. If (z,y) = (x,y') for all z € X, then
ly =91 =—v.9)—y—y.y)=0

which proves uniqueness.

Now focus on the existence part. The case f = 0 it trivial, so assume that
f#0. Let M = {z : f(x) = 0}. Then M is a closed linear subspace of X
Hence, by Theorem 6.5, there exists z € M= such that f(2) # 0 and ||z|| = 1.
Now pick an arbitrary x € X and let u = f(x)z — f(z)z. Then f(u) = 0, so
u € M and hence (u, z) = 0. In other words

0= (f(x)z = f(2)z,2) = f(@)]|2]* = f(2)(=,2).

Solving for f(x), recalling that ||z|| = 1, gives

f(z) = f(2)(z,2) = (z, f(2)z).
Taking y = mz finishes the proof. O

So all Hilbert spaces & are isomorphic to X'* via the conjugate linear isometry
r — f,. Hence X = X* = X*™* = . .. Moreover, recall the definition Z(f) =
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f(x)foragivenz € Xand X = {& : € X} C ™. If X is Hilbert, then
z(f) = 2(fy) = (z,y), i.e. £ = (x,-). This entails that ¥ = X, i.e. X is
reflexive.

The family {u, }aca is said to an orthonormal family if (u,,, u,,) = 0 for all
oy # ag and |Ju, || = 1 for all a.

Theorem 6.7 (Bessel’s inequality) Suppose that {u, }oc 4 is an orthonormal fam-

ily. Then for all x € X,
D e ua)® < ).
acA

In particular {« : {(x,u,) # 0} is countable.

Proof. Write ¢, = (x, u,). We have, for any finite I’ C A.

0< flz— ZCaUQHQ = [|lz]|* — 2R(z, anua> + | anuaHz

ackF ack ackF
2l =2 " leal? + D leal® = ll2]> = D leal?
acF aEF acl
where the equality follows from the Pythagorean Theorem. O

Theorem 6.8 Let {u, }oca be an orthonormal family. The following three state-
ments are equivalent

(a) Vo : (z,uy) = 0 = x = 0 (completeness),
(b) Va : ||z||> = >, l{x, ua)|? (Parseval’s identity),

(c) Vo :x =) (x,uq)uq, where the terms are nonzero for at most countably
many c.

Proof. That (b) implies (a) is trivial. To see that (a) implies (c), pick = and let
1, g, . .. be an enumeration of the a’s for which (z,u,) # 0. Write u; = uq;.
By Bessel’s inequality, ) ; |(x, u;)|* converges, so by the Pythagorean Theorem,

1Y e uihugl* = 1, ug) > — 0
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as m,n — oo. Since X is complete, this means that . (z, u;)u; converges.
Since (x — (7, u;), ua) = 0 for all o, it follows from (a) that x = ) . (z, u;)u;
as desired.

To see that (c) implies (b), by the same calculations as in the proof of Bessel,

n

Izl =D e u) P = lle = Y (e, ughul|* = 0
1

1

as n — oo by (c). O

A family that satisfies the three statements in the above theorem, is called an
orthonormal basis for X.

Theorem 6.9 Every Hilbert space has an orthonormal basis.

Proof.  Order the set of orthonormal families according to inclusion. Then
every chain has a supremum, namely the union of the families in the chain. By
Zorn’s Lemma, there is a maximal element, {u,, }. If this family does not span the
whole of X, there exists a z € X’ such that z := z — ) _ (2, uq)u, # 0. However,
then x/||x|| can be added to the {u, }, contradicting maximality. O

Theorem 6.10 A Hilbert space has a countable basis iff it is separable.

Remark. This result does not contradict exercise 26, since the notion of a basis is
different there.

Proof. For the backwards implication, let {z;} be countable and dense. Let
y1 = 1 and recursively y; = x,,,, where n; is the first index £ after n;_; such that
xy, is not in the span of yy, ..., y;_1. Then {y;} is linearly independent and dense.
Now use the Gram-Schmidt process on the y;’s.

For the forwards direction, suppose that {u;} is a countable basis. Then it is
easily seen that {Ziv apuj, :n € N,ap € Q +1iQ} is dense. O

Let {uqa }aca be an orthonormal basis for the Hilbert space X'. Then the map

T — {{7,U4) }aca 18 an isometry from X to [*(A), by Parseval’s identity. One
can also show that this map is surjective. Hence X = [2(A).
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7 Weak and weak* convergence

Let X be aNVS and X* = L(X, C). The weak toplogy on X is generated by X'*,
ie. z, — z weakly iff f(x,) — f(z) forevery f € X*.

The weak™* topology on X* is generated by X, ie. fn — f weakly* iff
fn(x) = f(z) forevery z € X, i.e. if f,, — f pointwise.
Remark. When speaking of weak* convergence on a NVS ), one must always
be able to see ) as the dual of some NVS X, i.e. JV = X*. One says that X is
then a pre-dual of ).

Remark. Since X C X**, weak* convergence on X'* is weaker than weak con-
vergence on X'*. The two notions coincide when X is reflexive.

Example. Let1 < p < co. We may then consider weak and weak™ convergence
on LP. Saying that f, — f weakly in LP means that ¢(f,) — &(f) for every

¢ € (LP)* ie.
/fng—> /fg

for every g € L9, where ¢ is the conjugate exponent of p. Saying that f,, — f
weakly* on LP means that we identify LP with the dual of L. Hence f, — f

weakly* means ¢y, () = ¢¢(g), i.e.

/fng—>/f9

for every g € L9. We see that for 1 < p < oo, weak and weak™* convergence on
LP agree.

In fact, this can be seen more directly by noting that L? is reflexive: (LF)** =
(L1)* = [P,

For p = 1, weak convergence means [ f,g — [ fg forevery g € L>. How-
ever, weak* convergence cannot be similarly characterized, since (L>°)* % L.
For ', we have I' = ¢} = ¢}, where ¢g = {¢g : N — C : lim;, g(k) = 0} and
coo =4{9: N — C: g(k) = 0 eventually}.

For p = oo, weak* convergence means [ f,g — [ fg forall g € L'. For
weak convergence, no simple characterization can be made. O

Theorem 7.1 (Alaoglu’s Theorem) Let X be a NVS and f,, € X* with || f,,|| < 1,
n =1,2,.... Then there exists a convergent subsequence { f,, }.
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Remark. Since A" is a complete metric space, sequential compactness and com-
pactness are equivalent. Hence Alaoglu’s Theorem can be stated as that the closed
unit ball is compact in the weak* topology.

Proof.  We will settle for the case when X is separable. Let {z;} C X be
dense. We want to show that there exists an f € X such that f,,, converges to
f pointwise. Since |f(x1)| < [|#1]], there exists a subsequence {n}} such that
{ fn} (1)} converges. Since |f(z2)| < ||z2||, there exists a further subsequence
{n7} such that { o2 (x2)} also converges. Continuing this procedure indefinitely
produces subsequences {n}} such that for each i, { fn](:ck)} converges for all
k < i. Now use diagonalization: { f”? (xx)} converges for every k. Let thus

ng = ng For z & {xx}, fix € > 0 and pick zy, so that ||z — x| < €/3. We have

[ Foos (€)= foy (@) < | () = i (@) | oy () = fony () [ i, (0) = oy ()] < €

for large enough 7 and j, since the first and the third term are bounded by €¢/3,
since || fy;|| and || f,,, || are bounded by 1. Hence {f,, ()} is Cauchy and hence
convergent. Now set f(z) = limy, f,, (), z € X. O

Example. The Poisson kernel in the unit disc. Let U = {z € C : |z| < 1}
be the open unit disc in the complex plane and T = QU. Recall that f : Q@ — C
is harmonic in Qif f + f/ = 0in Q. The Poisson kernel is the function
P:U xT — [0,00) given by

1—r? 1—r? 1—r? ]

i gy _
P(re®,6) = 2m(1 + 12 — 2rcos(f — ¢)) © 2m(1+7)?" 2m(1 —r)?

(identifying ¢ € T with ). It can be shown that if u is harmonic in (1 + €)U for
some € > 0, then

u(z) = / P(z,0)u(e)df =: (Pu)(z), z € U.
T
In particular, with u = 1,
/ P(re', 0)d¢ = / P(re',0)do = 1
T T

for all » < 1, where the first equality follows from the symmetry between ¢ and
in the definition of P. Now fix 1 < p < oo and take f € LP(T). Define

u(z) = (Pf)(2) :/P(z,é’)f(ﬁ)dﬁ.

T
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It can be shown that u thus defined is harmonic. Also, we have

o) < ([ 11@1Pe.0w)" < [ 170rPe o0

where the last inequality follows from Proposition 2.6 applied to the measure
du(0) = P(z,0)df. Hence, for r < 1,

[utenypan< | / F(O)P(rei®, 0)dods
- [ 170 / 0paodn = |1l

=1
In summary, if f € LP(T), then P f is harmonic and sup, ., [, |(Pf)(re'?)[Pd¢ <
1/115-

Conversely, if v is harmonic in U and sup, ., [; [u(re”)Pd¢ =: M < oo,
then there exists an f € LP(T) such that u(z) = (Pf)(z), z € U.

To prove the existence of such an f, let for r < 1, f.(6) = u(re®). Then
| frll, < M'?, so by Alaoglu’s Theorem, there exist r; 1 1 such that f,, — f
weakly*, i.e. fT — f ae., for some f € LP. The function u(r;z) is harmonic on

1U so by the above,

uriz) = | Pe.0)f, (0)d0

Since the P(z, ) on the right hand side is bounded by (1 — %) /(27 (1 —r;)?) and
the f,’s are bounded in L” and p > 1, it follows from a version of the DCT, to
be proved below, that the right hand side converges to [, P(z,6) f(6)df. The left
hand side converges to u(z), so we are done. O

Here is the promised version of the DCT.

Theorem 7.2 (The Dominated Convergence Theorem) Let 11 be finite. Assume
that f, — f a.e. and that { f,,} is uniformly integrable, i.e. for every € > 0, there
exists K < oo such that sup,, [ | fu|X{z:\fn@)>x1dp < € Then [ fodp — [ fdp.

Proof. Fix € > 0 and K as in the theorem. Then

fimsup| [ fu— [ 1< e+ /{ =
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by the ordinary DCT. O

Next we show how this version of the DCT applies to the above. Recall that
p > 1, so that the conjugate exponent ¢ is finite. Suppose that { f,,} is bounded in
LP: sup,, || full, < M < co. By Holder,

/\fn\X{fn(x)bK}du < N fallppd| fal@)| > KXV = (| fallppd| ful)[” > K}

MP 1/q
SM(W) <€

for large enough K. Note that this line of reasoning does not work for p = 1.

8 The Riesz Representation Theorem

We recall some topological facts. Proofs of these will be given in a later appendix.
A topological space X is said to be locally compact if for every x € X, there is a
compact set K such that x € K°. One says that X is Hausdorff if for all distinct
x,y € X there are disjoint open sets V' and W such that z € V and y € W.
When X is locally compact and Hausdorff, we write for short that X is LCH. Any
LCH space X has the property that for any € X and open set U > X, there is a
compact set K suchthatx € K° C K C U.

Here are some functions spaces that will be extensively considered. Let Y be
a topological space (usually either C or R or some subset of one of them).

e C(X,Y)={f:X —Y: fcontinuous}.
o Co(X,Y)={feCX,Y):{x:|f(x)| > €} compact for all ¢ > 0}.

o C.(X,)Y)={feCX,)Y):dK : f

Clearly C.(X,Y) C Cy(X,Y) C C(X,Y) with equalities if X is compact.
Special cases are cgo C ¢ C 11 C P C [*° C C(N,C). These spaces will all be
regarded as normed vector spaces, equipped with the uniform norm:

171 = sup £ (@)l

ke = 0 and K compact}.

Lemma 8.1 (Urysohn’s Lemma) Let X be LCH. If K is compact, U is open and
K C U, then there exists a continuous function f € C.(X,[0,1]) such that f =1
on Kand f =00on X\ U.
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Let X be LCH and let ;« be a measure on Bx. One says that y is outer regular
on F € By if
p(E) =inf{u(U) : U O E,U open}.

One says that p is inner regular on E if
w(E) =sup{u(K) : K C E, K compact}.

If 1 is outer regular on all £ € By, one says that y is outer regular and analo-
gously for inner regularity. If x4 is both outer and inner regular, then we say that p
is regular. A well-known example of a regular measure is Lebesgue measure.

If u(K) < oo for all compact K, p is outer regular and p is inner regular on
all open sets, then p is said to be a Radon measure (RM).

If nisa RM and f € C.(X,C), then u{z : |f(z)] > 0} < oco. Hence
f € L'(u) and we get
Ce(X,C) C L (p).

Hence we can define the linear functional f — [ fdu, f € C.(X,C). The
given linear functional is positive in the sense that the result is positive whenever
f = 0. Our first version of Riesz theorem will state that every positive linear
functional, I, on C.(X,R) can be written this way, i.e. that there exists a RM p
such that I(f) = [ fdu, f € C.(X,R). (Note that a positive linear functional /
on C.(X,R) must be real-valued, since I(f) = I(f*) — I(f~).) Since we will
for the time being, work with C..(X, R) rather than C.(X, C), we write C..(X) for
C.(X,R) until further notice. We will later come back to an extension to all linear
functionals on Cy(X, C).

Recall that the support, supp( f) of the function f is the closure of {x : f(z) #
0}. For an open set U C X, we write f < U if 0 < f < 1 and supp(f) C U.
Note that f < U is a slightly stronger statement than f < xy. We will often
make use of a similarly stronger version of Urysohn’s Lemma than stated above.
Namely for K C U there exists an f € C.(X,[0,1]) with f = 1 on K and
f < U. This follows on, for each z € K, picking a compact set K, such that
x € K C K, CU. Then {K?} is an open cover of K and can hence be reduced
to a finite subcover. Now apply Urysohn as above to K and the union of the sets
in this subcover.

Theorem 8.2 (The Riesz Representation Theorem) Let [ : C.(X,R) — R be
a positive linear functional. Then there is a unique Radon measure | such that

1(f) = / Jdu, f € C(X.R).
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Moreover
(*) w(U) =sup{I(f): f < U} forall open U,
(**%) u(K) =1inf{I(f) : f > xx} for all compact K.

The proof will be divided into several parts.

Proof of uniqueness and (*). Suppose I(f) = [ fdu, f € C.(X), where pis a
RM. If U is open and f < U, then trivially /(f) < u(U). If K C U is compact,
there exists by Urysohn an f € C.(X) such that f|x = 1 and f < U. Hence
w(K) < I(f). Now (*) follows from the inner regularity of 1 on open sets. From
(*) it now follows that g is unique on opens sets, and hence on all measurable sets
by p’s outer regularity.

Proof of existence and (**). The proof will rely on several claims that will be
proved afterwards.
Define the set functions

p(U) = sup{I(f) : f < U}, U open

and
P (E) =inf{u(U) : U O E,U open}, E C X.

Claim I. p* is an outer measure.

Claim I1. All open sets are p*-measurable.

By these claims, Carathéodory’s Theorem tells us that p := u*|, is a mea-
sure. This measure satisfies (*) and is outer regular by definition. (The measure p
is an extension of the set function p above, so we allow ourselves to use the same
notation for them.)

Claim I1I. yi satisfies (¥%*).

From this we can quickly show that ;¢ must be a RM. That p is finite on
compact sets follows immediately from (**). Also, if U is open and a < u(U),
then one can by (*) find f < U with I(f) > a. Let K = supp(f) C U. For any
g > xx wehave g > f,soI(g) > I(f) > a. Hence u(K) > a by (¥%).

At this point it only remains to prove:

Claim IV. I(f) = [ fdpu, f € Ce(X).

Before proving the claims, we need a preparatory lemma.

Lemma 8.3 Let K be compact and let {U;}"}_, be an open cover of K. Then one
canfind gj, j =1,...,n, suchthat g; < U; and Y} g; = 1 on K.
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Proof. Foreach x € K, x € U; for some j. Pick a compact set /V, such that
x € N2 C N, C U;. Then {N2}.ck is an open cover of K. Reduce to a finite
subcover N,,,..., N, . Let

Fr= |J Nei=L...n
k:Ny, CU;

Then Fj is compact, so there exists h; € C.(X) such that xr, < h; < Uj;. Since
U F; contains K, we have Y ) h; > 1 on K. Hence the open set

V::{$:zn:hj>0}

contains K. Thus we can find f € C.(X) with xx < f <V.Leth,,, =1— f.
Then Z?H h; > 0 everywhere, so that we can define

h; .
g]:#hjk _17...,77/.

Then supp(g;) = supp(h;) C U; and since h,,11 =0on K, > [ g; =1lon K. O

Proof of Claim I. That p*(()) = 0 and A C B = u*(A) < p*(B) is obvious,
so it suffices to show that p*(UE;) < > 0% u*(E;) for any E; C X. For this it
suffices, by the definition of *, to show that ,u(UOOU ) <> ( ;) for open sets
U;. By the definition of y, this amounts to showing that /(f) < 21 p(U;) for
any f € C.(X) with f < UU;. Let K = supp(f). Since K is compact, there is
an n such that X' C U7U;. By the lemma above, there exist g; with g; < U; and
> 1 g; = 1on K. However, then f = 3} fg; and fg; < Uj, so

o0

= I(fg) <> pu(U;) <D p(Uy)

1

Proof of Claim II. We want to show that for an open set U,
p(E) Z p (ENU) + p (ENUS).

Fix e > 0. If E'is open, then £ N U is open, so we can find f < E N U such that
W (ENU) =pu(ENU) < I(f)+e. Inthe same way there exists g < F \ supp(f)
such that (E \ supp(f)) < I(g) + €. Since f + g < E,

pr(E) = p(E) = 1(f) + 1(g) > p(ENU) + u(E\ supp(f)) — 2¢
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> (ENU)+p (ENUS) — 2e.

This proves the desired inequality for open sets. For general £, pick open V' with
w(V) < u*(E) + e. Then by the above,

pHE)Z p(V) —ezp (VNU)+p*(VNU) —e

> (ENU)+p (ENUS) —e
O

Proof of Claim II1. Fix a compact set K, ¢ > Oand f > xx. LetU. = {z : f(z) >
1 — €}. Then U, is open and contains K. Hence, forany g < U, g < f/(1 —¢),
so that I(g) < I(f)/(1 —¢€). Thus u(K) < u(U) < I(f)/(1 —€). Since € is
arbitrary, p(K) < inf{I(f): f > xx}-

For the reverse inequality it suffices, by the outer regularity of ;. to show that
inf{/(f) : f > xx} < w(U) for any open U that contains K. However, by
Urysohn, there is an f with xx < f < U and for this f, I(f) < p(U). O
Proof of Claim 1V. By linearity, we may assume without loss of generality that 0 <
f < 1. Fix alarge integer N. Let Ky = supp(f) and K; = {z : f(x) > j/N},
g=1,...,N. Let

0, ‘ xr ng—l
filr) =4 fla)—%, zeK1\K,
%, xr € Kj

Then f € C.(X), f = Ziv fiand xx, /N < f; < xk,_,/N. Integrating gives

%M(KJ‘) < /fj dp < %M(Kjl)'

On the other hand, if U D K;_; and U is open, then N f; < U so that NI(f;) <
p(U). Since p is outer regular, NI(f;) < p(K;_1). By (*%), u(K;) < NI(f;).

Thus
1

—u(K;) < I(f;) <

N p(Io1)-

1
N
We get

’](f) - /fdu‘ < i ’f(fj) - /fj dﬂ’ < i%(M(Kj—l) —M(Kj)>
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< < (1Ko) — u(E)) < ulsupp(f) = 0

as N — oo. O
We now have a characterization of positive linear functionals in C..(X, R)*. In

the end we want a characterization of all linear functionals in Cy(.X, C)*. For that

we first need some approximation results. From now on the notation C,(X) will

be understood to mean C..(X, C). By definition, a RM is inner regular on all open

sets. In fact, more is true:

Proposition 8.4 A Radon measure i is inner regular on all o-finite sets.

Proof. Fix e > 0. If u(E) < oo, then we can find an open set U O F with
w(U) < u(E) 4+ e. We can also pick compact ' C U with u(K) > u(U) — €.
Since u(U \ E) < e we can also find open V' 2 U \ E with u(V') < e. The set
K := F'\ V is compact and

p(I) = p(F) — p(V) > p(E) — 2e.

The extension to o-finite F is straightforward. O

Proposition 8.5 If i1 is a o-finite Radon measure and ¢ > 0, then for all E €
By, there exist a closed set F' and an open set U such that ' C FE C U and
WU\ F) <e

Proof. Write E = U; E; where p(E;) < oo for all j. Pick open U; O E; such
that 4(U;) < p(E;) + 27U+, With U = U,;U;, we get u(U) < pu(E) + ¢/2,
so u(U N E°) < €/2. Repeat the procedure for E° to get open V' O E° with
u(V) < w(E°) 4+ €/2,s0 u(VNE) < €/2. Let F = V°. Then

p(U\NF)=pUnV)<u(UNVNE)+u(UNVNE)

<ppUNE )+ u(VNE) <e.
O

An immediate consequence or Proposition 8.5 is that for any measurable set
E one can find an F.-set A and Gs-set B such that A C £ C B and pu(A) =
p(E) = p(B).

Aset A C X is said to be o-compact if it is the union of a countable family of
compact sets. For example, if X is second countable (on top of being LCH), then
every open set is o-compact.
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Theorem 8.6 If every open set is o-compact, then any measure . which is finite
on compact sets is regular, and hence a Radon measure.

Proof.  Since p is finite on compact sets, C.(X) C L'(u) and hence the
operation [ : C.(X) — R given by

1) = [ fan

is a well defined positive linear functional. Hence there is a RM v such that
I(f)= [ fdv, f € C(X).

Let U be open. By assumption, we can write U = U, K, there the K;’s are
compact and increasing. By Urysohn, there are f; € C.(X) such that yx, < f; <
U and we may pick the f;’s so that f; < f; < .... Then by the MCT

,u(U):lign/fnduzlign/fnduzy(U).

Now pick an arbitrary ¥ € By. Pick, according to Proposition 8.5, open V' and
closed F'with F C E C Vand v(F)+¢/2 > v(E) > /u(V) — €/2. Then, since
V' \ F is open,

p(VANEF)=v(V\F)<e
Hence u(V) < p(F) + € < u(E) + €, so p is outer regular. Also, since X itself
is open, we can write X = U, K for increasing compact K;’s. Thus p(F) =
lim; u(F N K;), so for large enough j,

p(F N KG) > u(F) —e> p(V) =2 > p(E) — 2.

Since F' N K; is compact, this proves inner regularity. O

Proposition 8.7 (Approximation of measurable functions.) If i is a Radon
measure, then C.(X, C) is dense in LP(u) for every p € [1, 00).

Proof. By Proposition 2.5, the set of simple functions is dense in L?, so it
suffices to show that for any measurable F of finite measure and ¢ > 0, there is
an f € C.(X,C) with |[xg — f|? < e. By Proposition 8.4, 11 is inner regular
on I, so we can find a compact K and an open U such that X C F C U and
w(U \ K) < e. By Urysohn, there is an f € C.(X,C) such that yx < f < xu.
Hence

Ixe = fIIF < u(U\K) <e
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Theorem 8.8 (Luzin’s Theorem) Let ;1 be a Radon measure, f : X — C mea-
surable and € > 0. If W(F) < oo, where E = {z : f(x) # 0}, then there exists
a ¢ € C.(X) such that u{x : f(x) # ¢(x)} < e. If f is bounded, then ¢ can be
chosen so that |6, < ||f]]u-

Proof. Recall Egoroff’s Theorem: if y is a finite measure and f,, — f a.e.,
then there is a set A with (A) < e and f,, — f uniformly on A°.

Assume first that f is bounded. Then f € L!, so by the above proposition
there exist functions g, € C.(X) such that g, — f in L'. Hence, by exercise
18, one can find g, € C.(X) with g, — f a.e. By Egoroff, there isan A C E
such that u(E \ A) < ¢/3 and g, — f uniformly on A°. By Proposition 8.4 there
is a compact K and an open U suchthat K C A C E C U, u(A\ K) < ¢/3
and p(U \ E) < €/3. Since the g,’s are continuous and g, — f uniformly on
K, f must be continuous on K. By Tietze’s Extension Theorem, there exists a
continuous function g with ¢ = f on K and supp(g) C U. Also, u{x : ¢(z) #
f@)} <pU\K) <e

Finally let 4 : C — C be given by h(z) = z when |z| < ||f]|. and h(z) =
Il f]lusgnz when |z| > || f|l.- Then h is continuous and ¢ = h o g satisfies also
1Dl < N1 flu-

The extension to unbounded f follows on picking M so that p{x : |f(z)| >
M} < €/2 and applying the above to &1 ()<} O

Now we start to build up to the full version of Riesz theorem. First we claim

that Cy(X) = Cu(X): if f € Co(X), let K,, = {x : |f(x)] > 1/n} which is
a compact set. By Urysohn there is a g, € C.(X) such that g, > xk,. Then
gnf € Ce(X) and [|gnf — fllu < 1/n.

Let I be a bounded positive linear functional on C.(X). For f € Cy(X) pick
fn € Cu(X) so that || f,, — f]|. — 0. Since [ is bounded, this implies that {/(f,,)}
is Cauchy and hence convergent. We can thus continuously extend I to C(X):
I(f) = lim, I(f,). Moreover, by Riesz, I(f) = [ fdu, f € C.(X), fora RM
p. Thus, saying that I is bounded, i.e. ||I]| < oo, is equivalent to sup{ [ g dpu :
g € Co(X), |lglle < 1} < oo, which in turn is equivalent to ;(X) < oo, by (*)
applied to X. We also see that || /|| = (X)) and since y is finite it follows from
the DCT that

1) =tim [ fudu= [ fde

In summary: every positive bounded linear functional / € C(X)* corresponds to
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a finite Radon measure x via the relation

1(f) = / fdu, f € Co(X).

Next we want a complete characterization of Cp(X)* and not only for the positive
linear functionals there.

Theorem 8.9 (Jordan decomposition of linear functionals) For any real-valued
I € Co(X,R)*, there are positive linear functionals I and I~ such that I =
I™—1I.

Proof. Let for all nonnegative f € Cy(X, R)

I(f) =sup{I(g): 0 < g < f}.

We first show that /™ is bounded and linear for nonnegative f’s. For any 0 < g <
FA @ < gl < LI s s0 [TTCHT < LI -

Clearly I (cf) = cI™(f) for ¢ > 0. We also need to show that I (f; + fo) =
I(f1) + I (fs), fi, fo > 0. For this, observe that on the one hand, whenever
0<g < fiand0 < go < fo, I"(f1 + f2) = I(g1 + g2) + 1(g1) + I(g2) and
hence

IY(fu+ fo) 2 TH(fi) + T (f2)

On the other hand, if 0 < g < f} + f, let gy = min(f1,¢) and g = g — g1. Then
0<¢ < frand 0 < g5 < f5. Hence

IY(f1) + T7(f2) > T (fi + fo)-
Next, extend I to all f € Cy(X,R) by
) =177 = I7(f).

To see that this is well defined, suppose that f also can be written as g — h,
g,h > 0. Then f* 4+ h = g+ f~ so by the above linearity, I*(f*) + I (h) =
It(g)+ IT(f),ie. IT(fT)—=It(f")=1%(g9) — IT(h). The functional I is
obviously linear and

[T < max([77(fO)] () < M mas((Lf s 111 = 121l

so that ||[IT|| < ||I]|. Finally let /= = I'™ — I, which is positive by the definition
of I, O
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Assume now that I € Cy(X)* and write J for the restriction of I to Cy(X, R).
Then, writing f = g + ih for f € Cy(X), we have

I(f) = J(g) +iJ(h).

Let also J; = RJ and J; = &J. By the decomposition lemma, we can write
Jr, = Ji — J; for positive functionals .J;” and J;_, k = 1, 2. By Riesz there are
unique RM’s ju1, po ,pu3 and g such that Ji7(f) = [ fdus, J7(f) = [ fduo,
J = [ fdus and JS (f) = [ fdua, f € Co(X,R). Putting this together, letting
u denote the complex measure ji1 — pio + (g — fa),

1(f) = / fdu, f € Co(X).

This already gives an extended version of Riesz’ theorem, but one can in fact do
more. A complex measure /. is said to be Radon if all its parts are Radon measures.
Let

M(X) :={u: Bx — C: u finite complex Radon measure}.

Make M (X) into a NVS using the norm ||i|| = |p|(X). Recall that the measure
||, the total variation of p is defined as || = pq1 + p2 + ps3 + pa. Equivalently,
for any measure v such that pu, < v, k=1,2,3,4,

1(E) = [E fldv, E € By

where f is a Radon-Nikodym derivative du/dv. From this is follows that for two
complex measures p and 1/, |+ /| < |p| + |¢/]. This shows that || - || is indeed
a norm.

Clearly |u| is Radon if all its parts are Radon. Conversely, if |u| is Radon
and finite, then, for £ € By, there is an open U and a compact K such that
K C ECUand |u|(U\ K) < e. This follows from combining Propositions 8.4
and 8.5. Hence (U \ K) < € for all parts of p. This proves that 1, is regular
and in particular Radon. In summary: a finite complex measure x is Radon iff ||
is Radon.

Theorem 8.10 (Riesz Representation Theorem, complex version) For u €

M(X), let I,(f) = [ fdu, f € Co(X). Then the map p — 1, is an isomet-
ric isomorphism from M (X) to Co(X)*.

38



Proof. That the map is injective is obvious and surjectivity was shown above.
Linearity is also obvious, so it remains to prove that ||u|| = ||1,||. However

uumzy/MMS/VMMSMMWNU

s0 [[1,]] < [[u]|. For the reverse inequality, let b = dy/d|u| and fix e > 0. By
Luzin’s Theorem there is an f € C.(X) with ||f||, < 1 and f = h on E° where
|| (F) < €/2. Since |h| = 1, we get

sz/mmw:/MMMz/mm

< ]/(ﬁ—f>du\+\/fdu\ §2|#|(E)+‘/fdu‘ <et L

Hence ||| < [ 1,.]]- D

Corollary 8.11 If X is compact, then M (X) and C(X)* are isometrically iso-
morphic.

9 Vague convergence of measures

In this section we study weak* convergence on M (X) = Cy(X)* in a bit more
detail. Since weak* convergence of measures is usually referred to as weak con-
vergence in probability theory, which is a stronger concept here (since C(X) is
usually not reflexive), a common compromise is to refer to weak* convergence as
vague convergence. Hence, to say that u,, — p vaguely means the same as saying
that p,, — p weakly*, i.e.

L (f) = 1u(f), f € Co(X)

1.e.

[t [ san 5 e,

In probability theory, if u,, is the distribution of the random variable &, and p is
the distribution of y, i.e. u(E) =P(§ € E), E € Bg and analogously for s, and
L — 1 vaguely, then this is also referred to as &, — £ in distribution.

For a positive measure in M (R), write F'(z) = F,(X) = p(—o0,z], z € R.
The following result is important, in particular in probability theory.
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Proposition 9.1 Assume that p,,;n € M(R) are positive measures such that
sup,, ||pn|| < oo. Then p, — p vaguely iff F,,(x) — F(x) for every x at which I’
is continuous.

Proof.  We prove only the backwards implication. We want to show that
Jg fdpn — [g fduforall f e Co(R). Assume first that f has compact support
and is continuously differentiable. Since F’ is increasing, F' is continuous at all
but at most countably many points. In particular F;,, — F’ a.e. By assumption,
the F),’s are uniformly bounded. Hence integration by parts, the DCT and the fact
that f has compact support imply that

[ sana= [ rar = [ p@r @

= /R () F(x)da = /R fdpu.

By the Stone-Weierstrass Theorem, the family, .S, of continuously differentiable
functions with compact support, is dense in Cy(X). Fix ¢ > 0 and let M =
max(||p]], sup,, |1nl]). For f € Co(X) pick g € S such that || f — g, < ¢/(3M).
By the above | fR gdp, — fR gdu| < €/3 for sufficiently large n. An application
of the triangle inequality then gives

]4f@m—4f@4<e

10 Some useful inequalities

Theorem 10.1 (Markov’s/Chebyshev’s inequality) Let f € LP(p) and let £, =
{z :|f(z)| > a}. Then

/15

=

(Ey) < o

Proof.
flIP = flPdu flPdu > o u(E,).
H Hp /X | ‘ > /L;a | ‘ > ( )
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Theorem 10.2 (Boundedness of integral operators) Let (X, M, u) and (Y, N, v)
be two o-finite measure spaces and let f : X x Y — C be M @ N -measurable.
Letp € [1,00] and let T : LP(v) — LP(u) be the linear operator given by

- /Y Kz, 9)f(g)(dy), | € ().

If there exists a constant C' < oo such that

/X K () |u(dr) < C

forae yecY and
| 1Kl < 0
Y

for a.e. x € X, then the integral in the definition of T' converges absolutely and

HTfHLP(u) < C”fHLP(u)

In particular, T is a well defined bounded linear operator.

Proof. We do the case 1 < p < o0, leaving the easier cases p = 1 and p = oo
as an exercise. Let ¢ be the conjugate exponent of p. We have

[ 1K@ty - / K (e, )2 (16 (e, ) 711 (9)] ) v dy)

/|ny @) " ([ 1K llrwry)”

<ct( [k lrwPvidy) "

where the first inequality is Holder and the second inequality follows from as-
sumption. By Tonelli’s Theorem

| ([ s@aswivan) uas) < e [ 11wl [ 1K)

< cla /Y F@)Puldy) < oo
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where the first inequality follows from the above, the second from assumption and
the third from the fact that f € LP(v). Hence [, |K(z,y)f(y)|v(dy) converges
for a.e. x as desired. Also,

Jiaen@rutin < [ ([ 1K@ nwhk) ud) < g

so |7 fll, < ClIflp- =

Theorem 10.3 (Minkowski’s inequality for integrals) Ler (X, M, i) and (Y, N, v)
be o-finite, 1 < p < oo and f a M & N -measurable nonnegative function. Then

P 1/p » 1/p
Y < 7 '
[/X (/Y(f(x )V(dy)> u(dx)} < /Y (/Xf(m Y) M(d$)> v(dy)

In other words

I ] 16amtdnlig < [ 17Cplmr).

Proof. For p = 1 this is an equality that follows immediately from Tonelli’s
Theorem, so assume p > 1 and let ¢ be the conjugate exponent. If g € L9(u) and
lgllg =1, then

[z, y)v(dy) )g(z)|p(dr) = [z y)lg(z)|p(dr)v(dy)
(] ) A
< /Y ( /X f(x,y)”ﬂ(dw)>1/p1/(dy)

where the inequality follows from Holder applied to the inner integral, keeping in
mind that || qu = 1 Now use Theorem 3.3, the reverse of Holder, with g as f, ¢

aspand [, f(-,y)v(dy) as g. O

11 Appendix on topology

The aim of this appendix is to tie up the ”loose ends” from the section on Riesz
Representation Theorem, by proving the topological facts we used there.
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Let X and Y be topological spaces and assume that the topology on Y is
generated by £ C P(Y). Let f : X — Y. Then f is continuous iff f~!(V) is
open in X for every V € £. The forward implication is trivial. The backward
implication follows from that inverse images commute with the elementary set
operations.

A topological space is said to be normal if for any disjoint closed sets A and
B, there are disjoint open sets U and V withU D Aand V D B.

Lemma 11.1 Let X be normal and A and B closed and disjoint subsets. Let
I={k27":n € N,k=1,2,...,2"}. Then there exist open sets U,, v € I such
that A C U, C B forall r and U, C Ug whenever r < s.

Proof. LetU, = B°. Pick opendisjoint V' D Aand W D BandletU, ), = V.
Then L
AC U1/2 c Ul CWwWeC B°=U,.
Now use induction on n: suppose that we have sets U, with the desired properties
forre {k2":n=1,...,N—1,k=1,...,2"} and let r = 527" for an odd
i,ie.r = (25 + 1)27" for some j € {0,...,2Y~! — 1}. Then by the induction
hypothesis,

Ujgf(Nfl) C U(j_i_l)gf(Nfl).

By normality, there exist disjoint open sets V' O U.p—(v-1) jo-(v—1 and W D U¢ (12— (-1
Then
V g WC C U(j+1)27(N71)

so we can take Ugj1yo-v = V. O

Theorem 11.2 (Urysohn’s Lemma for Normal Spaces) Let X be normal and
let A and B be disjoint closed subsets. Then there exists an f € C(X, |0, 1]) such
that f =0on Aand f =1o0on B.

Proof. Let U, be as in the lemma and let U, = X for r > 1. Let
flz)=inf{rel:xzeU.}.

Trivially f =0on A, f = 1 on B and f(z) € [0, 1] for all z. It remains to show
that f is continuous. However

f0,0) ={z: f(z) <a} ={x:2 €U, forsomer < a} = UU"’

r<a
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an open set. Similarly

f a1l ={2: f(z) > a} ={zr ¢ U, forsomer > a} = Uﬁrc

r>o

is also open. Since the sets [0, «) and («, 1], o € [0, 1] generate the topology on
0, 1], we are done. 0

If A is a closed subset of a compact space X and {U,} is an open cover of A,
then {U,} U {X \ A} is an open cover of X. It follows that any closed subset of
a compact space is compact.

Suppose that X is Hausdorff, K a compact subset and x ¢ K. Then there
are disjoint open sets U > x and V D K. To see this, pick for each y € K,
disjoint open sets U, > z and V}, 3 y. Then {V, } ek is an open cover of K and
can hence be reduced to a finite subcover V,, , ..., V,, . Now take U = N'U,, and
V= U?‘/yk

Proposition 11.3 Every compact Hausdorff space X is normal.

Proof. Let A and B be closed and disjoint. Since B is compact, we can for
each z € A find disjoint open sets U, > z and V,, D B. Since A is compact,

the open cover {U, }.c4 can be reduced to a finite subcover U,,,...,U,,. Let
U=UtU,, and V = NV, . Then U and V are open and disjoint, U D A and
VO B. O

Proposition 11.4 Let X be a locally compact Hausdorff space. Let U be open
and x € U. Then there exists a compact set K such that x € K° C K C U.

Proof. 'We may assume that U is compact, since if this is not the case, we
can by definition of local compactness find compact F' with x € F*°. Then we can
replace U with U N F° whose closure is compact.

Since U is compact, OU is also compact. Hence there are sets U > z and
W D OU that are open in U.Since V C U,V is open in X. We also have

VCT\WCT.
Hence V is compact, so we can take K = V. O

Now suppose X is LCH, U open, K compact and K C U. For each x € K,
pick the compact set K, so that z € K C K, C U. Then the K,’s constitute
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an open cover of K and can hence be reduced to a finite subcover K, , ..., K, .
Let N = UT'K,,. Then N is compact and X' C N° C N C U. The subspace
N is compact and hence normal, so by Urysohn for normal spaces there is an
f € C(N,[0,1]) such that f = 1 on K and f = 0 on ON. Extend to the whole
of X by letting f =0on X \ N. Then f € C(X,[0,1]) and f < U. This proves
Urysohn’s Lemma in the form most used.

Theorem 11.5 (The Tietze Extension Theorem) Let X be LCH, K C X com-
pactand f € C(K,[0,1]). Then there exists an F' € C(X, [0, 1]) such that F' = f
on K and F' = 0 outside a compact set.

Proof.  Assume first that X is normal and A and B are closed an disjoint.
We claim that there exist continuous functions g; with 0 < ¢; < 2/71/37 and
f=Vg, < (2/3)F. To see this for j = 1, let C = f~'[0,1/3] and D =
f7'2/3,1]. Then C and D are closed subsets of A and since A is closed, C'
and D are closed in X. Hence, by Urysohn, there is a g; € C(X,[0,1/3]) with
g1=1/3onDand g; =0on BUC.

Now suppose that we have found gy, ..., g,_1 of the desired form. Then, in
the same way, there is a g, € C(X, [0,2"7!/3"]) such that g, = 2"~!/3" on (f —

1 g,)7100,27 /3" and g, = 0on (f — 321" g,) M ((2/3)", (2/3)"'] U B,
Since (2/3)""! — 27~ /3" = (2/3)", g, is also of the desired form.
Let =) (" g;. Clearly F' = f on Aand F = 0 on B. Since

17> gl <> (5) —o
1 n+1

the series converges uniformly and hence F' is continuous.

For the general statement, apply the above with A = K and B = ON, where
N is compact and K C N°, on the compact and hence normal subspace /N of X.
Extend by letting F' = 0 on N°. O
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