Exercises in Functional Analysis, Week II

- 1. Let $p \in (0, 1)$. Show, using characteristic functions of disjoint sets that $\|\cdot\|_p$ is not a norm on $L^p([0, 1])$. Show also that the "unit ball" $\{f : \|f\|_p \leq 1\}$ is not convex.
- 2. Prove that the normed spaces $L^p(\mathbb{R})$, $L^p(0,1)$ are isometrically isomorphic. Here $1 \leq p \leq \infty$.
- 3. Show that for $1 \leq p < q < \infty$ neither $L^p(\mathbb{R}) \subset L^q(\mathbb{R})$ nor $L^q(\mathbb{R}) \subset L^p(\mathbb{R})$. Hint: Consider suitable $f = \sum a_n \chi_{E_n}, E_i \cap E_j = \emptyset, i \neq j$.
- 4. (Packing of balls) Let $1 \le p \le \infty$. Find, inside the unit ball of l^p , infinitely many pairwise disjoint balls of the same positive radius. Conclude from this that the closed unit ball in l^p cannot be compact.
- 5. Let M be a complete metric space and K a subset of M. Show that the following are equivalent
 - (a) K is compact, i.e. every open cover of K can be reduced to a finite subcover.
 - (b) K is sequentially compact, i.e. every sequence in K has a convergent subsequence.
- 6. Let X be an infinite-dimensional normed vector space.
 - (a) Show that for sufficiently small r > 0 one can find infinitely many pairwise disjoint balls of radius r inside the unit ball.
 - (b) Make the conclusion that a ball in X is compact if and only if X is finite.
- 7. Prove that l^{∞} and $L^{\infty}([0,1])$ are not separable, i.e. they does not contain a countable dense domain. Hint: Find uncountable set of points, all at mutual distance at least r for some r > 0.
- 8. Let (X, \mathcal{M}, μ) be a measure space. We say that μ is separable if there exists a countable family $\mathfrak{A} = \{A_1, A_2, \ldots\}$ of measurable sets such that

 $(\forall \varepsilon > 0) (\forall B \in \mathcal{M}) (\exists A_k \in \mathfrak{A}) : \mu(A_k \bigtriangleup B) < \varepsilon,$

here \triangle denotes the symmetric difference: $A \triangle B = (A \setminus B) \cup (B \setminus A)$.

- (a) Show that $L^p(X,\mu)$, $1 \le p < \infty$, is separable Banach space if μ is a separable measure.
- (b) Show that $L^p(\mathbb{R}^n)$, $1 \le p < \infty$, is separable (the measure is the Lebesgue measure. Observe that the Lebesgue measure on \mathbb{R}^n is not separable!).

9. Define a mapping $T: C([0,1] \to \mathbb{C}$ by the formula

$$T(f) = \int_0^1 f(t)t^2 dt.$$

Prove that T is a bounded linear functional with respect to the norm $||f||_p$, $1 , where <math>||f||_p = \left(\int_0^1 |f(t)|^p\right)^{1/p}$. Find the norm of this functional.

- 10. Let $X = l_2$, $f(x) = \sum_{k=1}^{\infty} \frac{1}{2^k} (x_k + x_{k+1})$, $x \in l^2$. Show that f is a linear bounded functional on X and find its norm.
- 11. Let $F : C^1([0,1]) \to \mathbb{C}$ be defined by $F(f) = f'(1), f \in C^1([0,1])$. Show that F is a linear functional. Prove that F is discontinuous with respect to $||f||_2$.
- 12. (a) Let X be a finite-dimensional space. Find a general form of a linear functional on X. Show that any linear functional on this space is continuous.
 - (b) Show that any linear functional on $M_n(\mathbb{C})$ is given by f(A) = trace(AB) for all $A \in M_n(\mathbb{C})$ and some $B \in M_n(\mathbb{C})$. What is the norm of this linear functional if $M_n(\mathbb{C})$ is equipped with the Hilbert-Schmidt norm $||A||_2 = \text{trace}(A^*A)^{1/2}$?